SIDE SIDE SIDE Congruence Postulate

About "SIDE SIDE SIDE Congruence Postulate"

SIDE SIDE SIDE Congruence Postulate (SSS) :

SSS or Side-Side-Side Congruence postulate is a rule which can be used to prove the congruence of two triangles. 

Side Side Side Congruence Postulate

Explanation :

If three sides of one triangle are congruent to three sides of another triangle, then the two triangles are congruent.

SIDE SIDE SIDE Congruence Postulate - Examples

Example 1 :

In the diagram given below, prove that ΔPQW  ≅  ΔTSW

Solution :

Statements

PQ  ≅  ST

PW  ≅  TW

QW  ≅  SW

ΔPQW  ≅  ΔTSW

Reasons

Given

Given

Given

SSS Congruence Postulate

Example 2 :

In the diagram given below, prove that ΔABC  ≅  ΔFGH

Solution :

Because AB = 5 in triangle ABC and FG = 5 in triangle FGH, 

AB  ≅  FG.

Because AC = 3 in triangle ABC and FH = 3 in triangle FGH, 

AC  ≅  FH.

Use the distance formula to find the lengths of BC and GH. 

Length of BC : 

BC  =  √[(x₂ - x₁)² + (y₂ - y₁)²]

Here (x₁, y₁)  =  B(-7, 0) and (x₂, y₂)  =  C(-4, 5)

BC  =  √[(-4 + 7)² + (5 - 0)²]

BC  =  √[3² + 5²]

BC  =  √[9 + 25]

BC  =  √34

Length of GH : 

GH  =  √[(x₂ - x₁)² + (y₂ - y₁)²]

Here (x₁, y₁)  =  G(1, 2) and (x₂, y₂)  =  H(6, 5)

GH  =  √[(6 - 1)² + (5 - 2)²]

GH  =  √[5² + 3²]

GH  =  √[25 + 9]

GH  =  √34

Conclusion :

Because BC = √34 and GH = √34,

BC  ≅  GH

All the three pairs of corresponding sides are congruent. By SSS congruence postulate, 

ΔABC  ≅  ΔFGH 

Other Triangle Congruence Postulates and Theorems

1. Side-Angle-Side (SAS) Congruence Postulate

If two sides and the included angle of one triangle are equal to two sides and the included angle of another triangle, then the tw o triangles are congruent.

2. Angle-Side-Angle (ASA) Congruence Postulate

If two angles and the included side of one triangle are equal to two angles and the included side of another triangle, then the two triangles are congruent.

3. Angle-Angle-Side (AAS) Congruence Postulate

If two angles and non-included side of one triangle are equal to two angles and the corresponding non-included side of another triangle, then the two triangles are congruent.

4. Hypotenuse-Leg (HL) Theorem

If the hypotenuse and one leg of a right triangle are equal to the hypotenuse and one leg of another right triangle, then the two right triangles are congruent.

5. Leg-Acute (LA) Angle Theorem

If a leg and an acute angle of one right triangle are congruent to the corresponding parts of another right triangle, then the two right triangles are congruent.

6. Hypotenuse-Acute (HA) Angle Theorem

If the hypotenuse and an acute angle of a right triangle are congruent to the hypotenuse and an acute angle of another right triangle, then the two triangles are congruent.

7. Leg-Leg (LL) Theorem

If the legs of one right triangle are congruent to the legs of another right triangle, then the two right triangles are congruent.

Apart from the problems given above, if you need more problems on triangle congruence postulates,

Please click here

After having gone through the stuff given above, we hope that the students would have understood, "Side side side congruence postulate". 

Apart from the stuff given in this section if you need any other stuff in math, please use our google custom search here.

HTML Comment Box is loading comments...