Side-Angle-Side or SAS Congruence Postulate is a rule which can be used to prove the congruence of two triangles.

**Explanation :**

If two sides and the included angle of one triangle are equal to two sides and the included angle of another triangle, then the two triangles are congruent.

**Example 1 :**

In the diagram given below, prove that ΔAEB ≅ ΔDEC using two column proof.

**Solution :**

AE ≅ DE, BE ≅ CE ∠1 ≅ ∠2 ΔAEB ≅ ΔDEC |
Given Vertical Angles Theorem SAS Congruence Postulate |

**Example 2 :**

Check whether two triangles PQR and JKL are congruent.

**Solution :**

(i) PR = LA (Given)

(ii) ∠R = ∠K (Given)

(i) RQ = JK (Given)

Hence, the two triangles PQR and JKL are congruent by **SAS** postulate.

**1. Side-Side-Side (SSS) Congruence Postulate**

If three sides of one triangle is congruent to three sides of another triangle, then the two triangles are congruent.

**2. Angle-Side-Angle (ASA) Congruence Postulate**

If two angles and the included side of one triangle are equal to two angles and the included side of another triangle, then the two triangles are congruent.

**3. Angle-Angle-Side (AAS) Congruence Postulate**

If two angles and non-included side of one triangle are equal to two angles and the corresponding non-included side of another triangle, then the two triangles are congruent.

**4. Hypotenuse-Leg (HL) Theorem**

If the hypotenuse and one leg of a right triangle are equal to the hypotenuse and one leg of another right triangle, then the two right triangles are congruent.

**5. Leg-Acute (LA) Angle Theorem**

If a leg and an acute angle of one right triangle are congruent to the corresponding parts of another right triangle, then the two right triangles are congruent.

**6. Hypotenuse-Acute (HA) Angle Theorem**

If the hypotenuse and an acute angle of a right triangle are congruent to the hypotenuse and an acute angle of another right triangle, then the two triangles are congruent.

**7. Leg-Leg (LL) Theorem**

If the legs of one right triangle are congruent to the legs of another right triangle, then the two right triangles are congruent.

Apart from the problems given above, if you need more problems on triangle congruence postulates,

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

HTML Comment Box is loading comments...

You can also visit the following web pages on different stuff in math.

**WORD PROBLEMS**

**Word problems on simple equations **

**Word problems on linear equations **

**Word problems on quadratic equations**

**Area and perimeter word problems**

**Word problems on direct variation and inverse variation **

**Word problems on comparing rates**

**Converting customary units word problems **

**Converting metric units word problems**

**Word problems on simple interest**

**Word problems on compound interest**

**Word problems on types of angles **

**Complementary and supplementary angles word problems**

**Trigonometry word problems**

**Markup and markdown word problems **

**Word problems on mixed fractrions**

**One step equation word problems**

**Linear inequalities word problems**

**Ratio and proportion word problems**

**Word problems on sets and venn diagrams**

**Pythagorean theorem word problems**

**Percent of a number word problems**

**Word problems on constant speed**

**Word problems on average speed **

**Word problems on sum of the angles of a triangle is 180 degree**

**OTHER TOPICS **

**Time, speed and distance shortcuts**

**Ratio and proportion shortcuts**

**Domain and range of rational functions**

**Domain and range of rational functions with holes**

**Graphing rational functions with holes**

**Converting repeating decimals in to fractions**

**Decimal representation of rational numbers**

**Finding square root using long division**

**L.C.M method to solve time and work problems**

**Translating the word problems in to algebraic expressions**

**Remainder when 2 power 256 is divided by 17**

**Remainder when 17 power 23 is divided by 16**

**Sum of all three digit numbers divisible by 6**

**Sum of all three digit numbers divisible by 7**

**Sum of all three digit numbers divisible by 8**

**Sum of all three digit numbers formed using 1, 3, 4**

**Sum of all three four digit numbers formed with non zero digits**