SET THEORY PRACTICE WORKSHEET FOR GRADE 11

(1)  Write the following in roster form.

(i) {x ∈ N : x2 < 121 and x is a prime}.     Solution

(ii) the set of all positive roots of the equation (x − 1)(x + 1)(x2 − 1) = 0.

(iii)  {x ∈ N : 4x + 9 < 52}.

(iv)  {x : (x−4)/(x+2) = 3, x ∈ R − {−2}}.

(2)  Write the set {−1, 1} in set builder form.       Solution

(3)  State whether the following sets are finite or infinite.

(i) {x ∈ N : x is an even prime number}.      Solution

(ii) {x ∈ N : x is an odd prime number}.      Solution

(iii) {x ∈ Z : x is even and less than 10}.      Solution

(iv) {x ∈ R : x is a rational number}.      Solution

(v) {x ∈ N : x is a rational number}.      Solution

(4)  By taking suitable sets A,B,C, verify the following results:

(i) A × (B ∩ C) = (A × B) ∩ (A × C).      Solution

(ii) A × (B ∪ C) = (A × B) ∪ (A × C)         Solution

(iii) (A × B) ∩ (B × A) = (A ∩ B) × (B ∩ A)       Solution

(iv) C − (B − A) = (C ∩ A) ∪ (C ∩ B').       Solution

(v) (B − A) ∩ C = (B ∩ C) − A = B ∩ (C − A).       Solution

(vi) (B − A) ∪ C = (B ∪ C) − (A − C)

(5)  Justify the trueness of the statement:

“An element of a set can never be a subset of itself.”

Solution

(6)  If n(P(A)) = 1024, n(A ∪ B) = 15 and n(P(B)) = 32, then find n(A ∩ B).                Solution

(7)  If n(A ∩ B) = 3 and n(A ∪ B) = 10, then find n(P(AΔB)).             Solution

(8)  For a set A, A × A contains 16 elements and two of its elements are (1, 3) and (0, 2). Find the elements of A.

(9)  Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where x, y, z are distinct elements.             Solution

(10)  If A × A has 16 elements, S = {(a, b) ∈ A × A : a < b} ; (−1, 2) and (0, 1) are two elements of S, then find the remaining elements of S.             Solution

Apart from the stuff given aboveif you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

Recent Articles

1. First Fundamental Theorem of Calculus - Part 1

Apr 17, 24 11:27 PM

First Fundamental Theorem of Calculus - Part 1

2. Polar Form of a Complex Number

Apr 16, 24 09:28 AM

Polar Form of a Complex Number