# SCATTER PLOTS AND ASSOCIATION

We know that a set of bivariate data involves two variables. Bivariate data can be used to explore the relationship between two variables. We can graph bivariate data on a scatter plot. A scatter plot is a graph with points plotted to show the association between two variables or two sets of data.

Data that show a positive or negative association and lie basically along a line exhibit a linear association. Data that show a positive or negative association but do not lie basically along a line exhibit a nonlinear association.

## Examples

Example 1 :

The final question on a science test reads, how many hours spent studying for this test. The teacher records the number of hours each student studied and the marks scored by the respective student on the test.

Hours Spent for Studying

0

0.5

1

1

1.5

1.5

2

3

4

Marks Scored by the Students

75

80

80

85

85

95

90

100

90

Describe the type of association between number of hours spent for studying and marks scored using scatter plot.

Solution :

Step 1 :

Make a prediction about the relationship between the number of hours spent studying and marks scored.

When we look at the above data, we can make the following prediction. A greater number of study hours are likely to be associated with higher marks.

Step 2 :

Make a scatter plot. Graph hours spent studying as the independent variable and marks scored by the students as the dependent variable.

Moreover, if we consider hours spent for studying as variable "x" and marks scored by the students as variable "y", we can write the above data as ordered pairs in the form (x, y).

Then, we have

(0, 75), (0.5, 80), (1, 80), (1, 85), (1.5, 85), (1.5, 95),                            (2, 90), (3, 100) and (4, 90).

Plot these points on a graph paper.

The graph shows a general upward trend. So the association between number of hours spent for studying and marks scored is positive. That is, as number of hours is getting increased, the marks scored is also getting increased.

Example 2 :

The scatter plot shows David’s height at various ages. Describe the type of association between David’s age and his height. Explain.

Solution :

As David is getting older, his height increases roughly along a straight line on the graph, so the association is positive and basically linear.

Example 3 :

Alexa is training for a 10K race. For each of her training runs, she recorded the distance she ran and the time she ran. She made a scatter plot of her data and drew a trend line. Use the trend line to predict how long it would take Alexa to run 4.5 miles.

Solution :

For a distance of 4.5 miles, the trend line shows a time of 45 minutes. So, it will take Alexa about 45 minutes to run 4.5 miles.

Example 4 :

David asked 20 people if they can buy a new product that he developed at each of several prices. The scatter plot shows how many of the 20 people said “yes” at a given price. Describe the association between price and the number of buyers.

Solution :

When price gets increased, the number of buyers gets  decreased. So, there is a negative association. Because the data points do not lie along a line, the association is non-linear.

Example 5 :

A survey made among students in a district and the scatter plot shows the level of reading and height for 16 students in the district. Describe the association and give a possible reason for it.

Solution :

Positive and basically linear :

The students who are taller read at a higher level.

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6