**Scatter diagram :**

This is a simple diagrammatic method to establish correlation between a pair of variables.

Unlike product moment correlation co-efficient, which can measure correlation only when the variables are having a linear relationship, scatter-diagram can be applied for any type of correlation – linear as well as non-linear i.e. curvilinear.

Scatter-diagram can distinguish between different types of correlation although it fails to measure the extent of relationship between the variables.

Each data point, which in this case a pair of values (xi, yi) is represented by a point in the rectangular axes of cordinates. The totality of all the plotted points forms the scatter diagram.

The pattern of the plotted points reveals the nature of correlation.

In case of a positive correlation, the plotted points lie from lower left corner to upper right corner, in case of a negative correlation the plotted points concentrate from upper left to lower right and in case of zero correlation, the plotted points would be equally distributed without depicting any particular pattern.

The coefficient of correlation "r" always lies between –1 and 1, including both the limiting values.

That is,

**-1 ****≤ r ≤ 1**

The following figures show different types of correlation and the one to one correspondence between scatter diagram and product moment correlation coefficient.

The best measure of correlation is provided by Pearson’s correlation coefficient.

However, one severe limitation of this correlation coefficient, as we have already discussed, is that it is applicable only in case of a linear relationship between the two variables.

If two variables x and y are independent or uncorrelated then obviously the correlation coefficient between x and y is zero.

However, the converse of this statement is not necessarily true i.e. if the correlation coefficient, due to Pearson, between two variables comes out to be zero, then we cannot conclude that the two variables are independent.

All that we can conclude is that no linear relationship exists between the two variables. This, however, does not rule out the existence of some non linear relationship between the two variables.

For example, if we consider the following pairs of values on two variables x and y.

(–2, 4), (–1, 1), (0, 0), (1, 1) and (2, 4),

then cov (x, y) = (–2+ 4) + (–1+1) + (0×0) + (1×1) + (2×4) = 0

as arithemean of "x" = 0.

Thus, r = 0.

This does not mean that x and y are independent. In fact the relationship between x and y is y = x².

Thus it is always wiser to draw a scatter-diagram before reaching conclusion about the existence of correlation between a pair of variables.

After having gone through the stuff given above, we hope that the students would have understood "Scatter-diagram".

Apart from the stuff given above, if you want to know more about "Scatter-diagram", please click here.

Apart from the stuff given on this web page, if you need any other stuff in math, please use our google custom search here.

HTML Comment Box is loading comments...

**WORD PROBLEMS**

**HCF and LCM word problems**

**Word problems on simple equations **

**Word problems on linear equations **

**Word problems on quadratic equations**

**Area and perimeter word problems**

**Word problems on direct variation and inverse variation **

**Word problems on comparing rates**

**Converting customary units word problems **

**Converting metric units word problems**

**Word problems on simple interest**

**Word problems on compound interest**

**Word problems on types of angles **

**Complementary and supplementary angles word problems**

**Markup and markdown word problems **

**Word problems on mixed fractrions**

**One step equation word problems**

**Linear inequalities word problems**

**Ratio and proportion word problems**

**Word problems on sets and venn diagrams**

**Pythagorean theorem word problems**

**Percent of a number word problems**

**Word problems on constant speed**

**Word problems on average speed **

**Word problems on sum of the angles of a triangle is 180 degree**

**OTHER TOPICS **

**Time, speed and distance shortcuts**

**Ratio and proportion shortcuts**

**Domain and range of rational functions**

**Domain and range of rational functions with holes**

**Graphing rational functions with holes**

**Converting repeating decimals in to fractions**

**Decimal representation of rational numbers**

**Finding square root using long division**

**L.C.M method to solve time and work problems**

**Translating the word problems in to algebraic expressions**

**Remainder when 2 power 256 is divided by 17**

**Remainder when 17 power 23 is divided by 16**

**Sum of all three digit numbers divisible by 6**

**Sum of all three digit numbers divisible by 7**

**Sum of all three digit numbers divisible by 8**

**Sum of all three digit numbers formed using 1, 3, 4**

**Sum of all three four digit numbers formed with non zero digits**