SAT MATH QUESTIONS ON LINES

Question 1 :

In the xy-plane, the following two lines are parallel.

y = mx - 5

2x + 3y = 6

Find the value of m.

Answer :

The equation of the first line y = mx - 5 is in slope- intercept form and its slope is 'm'

Write the equation of the second line 2x + 3y = 6 in slope-intercept for, that is y = mx + b.

2x + 3y = 6

Subtract 2x from both sides.

3y = -2x + 6

Divide both sides by 3.

3y/3 = -2x/3 + 6/3

y = -2x/3 + 2

Comparing y = -2x/3 + 2 with y = mx + b, m = -2/3.

Since the lines are parallel, slopes are equal.

slope of the 1st line = slope of the 2nd line

m = -2/3

Question 2 :

In the figure above, lines h, i, j and k are graphed in the xy-plane. Which of the following correctly orders than by their slope from least to greatest?

A) k < j < i < h

B) k < i < j < h

C) k < j < h < i

D) j < k < i < h

Answer :

In the figure above, k is a falling line.

slope of k is negative ----(1)

The lines h, i and j are raising lines, hence their slopes are positive.

Line h is steeper than the line i.

slope of i < slope of h ----(2)

Line i is steeper than the line j.

slope of j < slope of i ----(2)

Comparing (1), (2) and (30,

slope of k < slope of j < slope of i < slope of h

The correct answer choice is (A).

Question 3 :

In the xy-plane above, the line y = mx + b, where m is the slope and b is the y-intercept, is a reflection of a line across the y-axis. At which of the following points do the two lines intersect?

A) (0, b)

B) (0, -b)

C) (0, m)

D) (m , 0)

Answer :

A line and its reflection across the y-axis intersect at the y-intercept. For the given line y = mx + b, the y-intercept is b or (0, b).

Therefore, (0, b) is the point at which the two lines intersect.

The correct answer choice is (A).

Question 4 :

The graph of line k is shown in the xy-plane above. The equation of line n (not shown) is y = mx + b, where m and b are constants. If line k is perpendicular to line n, which of the following must be true?

A) m < 0

B) m > 0

C) b < 0

D) b > 0

Answer :

The line n (not shown) may have positive y-intercept or negative y-intercept.

Given : Equation of the line n (not shown) is y = mx + b.

So, the value of the y-intercept of 'b' in y = mx + b may be positive or negative and we can not predict exactly as

b > 0 or b < 0

Hence, we can reject options (C) and (D).

If two lines are perpendicular, the product of their slopes is equal to -1. Since the product of the slopes is a negative value, one line has a positive slope and the other line has a negative slope.

The line k shown in the xy-plane above is a falling line, so it has a negative slope.

Then, the other line n (not shown) perpendicular to line k must have a positive slope.

Slope of the line y = mx + b is 'm' and it is positive.

That is

m > 0

The correct answer choice is (B).

Question 5 :

In the xy-plane above, the line l has slope -5/4. What is the area of the triangle bounded by line l, the x-axis and the y-axis?

Answer :

slope = -5/4

rise/run = -5/4

rise ---> 5 units down

run ----> 4 units to the right

Clearly, the base of the triangle is 4 and the height is 5.

Formula for area of a triangle :

= (1/2) ⋅ b ⋅ h

Substitute b = 4 and h = 5.

= (1/2) ⋅ 4 ⋅ 5

= 20/2

= 10 square units

Question 6 :

In the xy-plane above, the line with equation 3x + 4y = 6 is perpendicular to the line with equation y = mx + b, where m and b are constants. What is the value of m?

Answer :

The slope of the line y = mx + b is 'm'.

Write the equation 3x + 4y = 6 in slope-intercept form.

3x + 4y = 6

Subtract 3x from both sides.

4y = -3x + 6

Divide both sides by 4.

4y/4 = -3x/4 + 6/4

y = -3x/4 + 3/2

The equation of the line y = -3x/4 + 3/2 is in slope intercept form, that is y = mx + b.

Slope of the line y = -3x/4 + 3/2 is

m = -3/4

Given : The line with equation 3x + 4y = 6 is perpendicular to the line with equation y = mx + b.

If two lines are perpendicular to each other, the product of their slopes is equal to -1.

(-3/4) ⋅ m = -1

-3m/4 = -1

Multiply both sides by 4.

-3m = -4

Divide both sides by -3.

m = -4/3

Question 7 :

If a line contains the points (0, 0) and (12, 16), then the line will also contain which of the following points?

A) (2, 3)

B) (3, 2)

C) (3, 4)

D) (4, 3)

Answer :

Find the slope of the line joining (0, 0) and (12, 16),

Slope of the line joining (x1, y1) and (x2, y2) ;

m = (y2 - y1)/(x2 - x1)

Substitute (x1, y1) = (0, 0) and (x2, y2) = (12, 16).

m = (16 - 0)/(12 - 0)

m = 16/12

m = 4/3

Equation of the line in slope-intercept form :

y = mx + b

Substitute m = 4/3.

y = 4x/3 + b

Since, the line is passing through the origin (0, 0), y-intercept b = 0.

Then, the equation of the line is y = 4x/3.

To find the point the line contains, check each point in the given options with the equation

y = 4x/3

A) (2, 3) :

3 = 4(2)/3

3 = 8/3  

B) (3, 2) :

2 = 4(3)/3

3 = 12/3

3 = 4  

C) (3, 4) :

4 = 4(3)/3

4 = 12/3

  4 = 4  

D) (4, 3) :

3 = 4(4)/3

3 = 16/3

3 = 16/3  

The correct answer choice is (C).

Question 8 :

If m and b are real numbers and m > 0 and b > 0, then the line whose equation is y = mx + b can not contain which of the following points?

A) (0, 1)

B) (1, 1)

C) (-1, 1)

D) (0, -1)

Answer :

For the given line y = mx + b,

slope = m

y-intercept = b

It is given that m > 0 and b > 0.

Since the y-intercept b is positive, the line intersects y-axis at a positive point and it will never intersect the y-axis at a negative point. 

In the given answer choices, (D) (0, -1) contains a negative point on the y-axis.

So, the line y = mx + b can not contain the point (0, -1).

The correct answer choice is (D).

Question 9 :

If a line has positive slope and positive y-intercept, then which of the following points the line can not contain?

A) (-1, 4)

B) (2, 3)

C) (1, -5)

D) (1, -4)

Answer :

The slope of the line is positive, so it is a raising line.

Since the y-intercept b is positive, the line intersects y-axis at a positive point. 

Graph of the line :

The line passes through the quadrants Q1, Q2 and Q3 and it does not pass through the quadrant 4.

In the given answer choices, (C) (1, -5) contains a point in quadrant 4.

So, the line can not contain the point (1, -5), because it is in quadrant 4.

The correct answer choice is (C).

Question 10 :

A line with the equation y = 2x - b passes through the point (2b, -9), what is the value of b?

Answer :

y = 2x - b

Since the line passes through the point (2b, -9), we can plug in x = 2b and y = -9 into the equation.

-9 = 2(2b) - b

-9 = 4b - b

-9 = 3b

Divide both sides by 3.

-3 = b

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

ALGEBRA

Variables and constants

Writing and evaluating expressions

Solving linear equations using elimination method

Solving linear equations using substitution method

Solving linear equations using cross multiplication method

Solving one step equations

Solving quadratic equations by factoring

Solving quadratic equations by quadratic formula

Solving quadratic equations by completing square

Nature of the roots of a quadratic equations

Sum and product of the roots of a quadratic equations 

Algebraic identities

Solving absolute value equations 

Solving Absolute value inequalities

Graphing absolute value equations  

Combining like terms

Square root of polynomials 

HCF and LCM 

Remainder theorem

Synthetic division

Logarithmic problems

Simplifying radical expression

Comparing surds

Simplifying logarithmic expressions

Negative exponents rules

Scientific notations

Exponents and power

COMPETITIVE EXAMS

Quantitative aptitude

Multiplication tricks

APTITUDE TESTS ONLINE

Aptitude test online

ACT MATH ONLINE TEST

Test - I

Test - II

TRANSFORMATIONS OF FUNCTIONS

Horizontal translation

Vertical translation

Reflection through x -axis

Reflection through y -axis

Horizontal expansion and compression

Vertical  expansion and compression

Rotation transformation

Geometry transformation

Translation transformation

Dilation transformation matrix

Transformations using matrices

ORDER OF OPERATIONS

BODMAS Rule

PEMDAS Rule

WORKSHEETS

Converting customary units worksheet

Converting metric units worksheet

Decimal representation worksheets

Double facts worksheets

Missing addend worksheets

Mensuration worksheets

Geometry worksheets

Comparing  rates worksheet

Customary units worksheet

Metric units worksheet

Complementary and supplementary worksheet

Complementary and supplementary word problems worksheet

Area and perimeter worksheets

Sum of the angles in a triangle is 180 degree worksheet

Types of angles worksheet

Properties of parallelogram worksheet

Proving triangle congruence worksheet

Special line segments in triangles worksheet

Proving trigonometric identities worksheet

Properties of triangle worksheet

Estimating percent worksheets

Quadratic equations word problems worksheet

Integers and absolute value worksheets

Decimal place value worksheets

Distributive property of multiplication worksheet - I

Distributive property of multiplication worksheet - II

Writing and evaluating expressions worksheet

Nature of the roots of a quadratic equation worksheets

Determine if the relationship is proportional worksheet

SAT - MATH

SAT - Math Practice

SAT - Math Worksheets

Hardest SAT Math Questions with Answers

Hardest PSAT Math Questions with Answers

TRIGONOMETRY

SOHCAHTOA

Trigonometric ratio table

Problems on trigonometric ratios

Trigonometric ratios of some specific angles

ASTC formula

All silver tea cups

All students take calculus 

All sin tan cos rule

Trigonometric ratios of some negative angles

Trigonometric ratios of 90 degree minus theta

Trigonometric ratios of 90 degree plus theta

Trigonometric ratios of 180 degree plus theta

Trigonometric ratios of 180 degree minus theta

Trigonometric ratios of 180 degree plus theta

Trigonometric ratios of 270 degree minus theta

Trigonometric ratios of 270 degree plus theta

Trigonometric ratios of angles greater than or equal to 360 degree

Trigonometric ratios of complementary angles

Trigonometric ratios of supplementary angles 

Trigonometric identities 

Problems on trigonometric identities 

Trigonometry heights and distances

Domain and range of trigonometric functions 

Domain and range of inverse  trigonometric functions

Solving word problems in trigonometry

Pythagorean theorem

MENSURATION

Mensuration formulas

Area and perimeter

Volume

GEOMETRY

Types of angles 

Types of triangles

Properties of triangle

Sum of the angle in a triangle is 180 degree

Properties of parallelogram

Construction of triangles - I 

Construction of triangles - II

Construction of triangles - III

Construction of angles - I 

Construction of angles - II

Construction angle bisector

Construction of perpendicular

Construction of perpendicular bisector

Geometry questions 

Angle bisector theorem

Basic proportionality theorem

COORDINATE GEOMETRY

Coordinate geometry formulas

Distance between two points

Different forms equations of straight lines

Point of intersection

Slope of the line 

Perpendicular distance

Midpoint

Area of triangle

Area of quadrilateral

CALCULATORS

Matrix Calculators

Coordinate geometry calculators

Statistics calculators

Mensuration calculators

Algebra calculators

Chemistry periodic calculator

MATH FOR KIDS

Missing addend 

Double facts 

Doubles word problems

LIFE MATHEMATICS

Direct proportion and inverse proportion

Constant of proportionality 

Unitary method direct variation

Unitary method inverse variation

Unitary method time and work

SYMMETRY

Order of rotational symmetry

Order of rotational symmetry of a circle

Order of rotational symmetry of a square

Lines of symmetry

CONVERSIONS

Converting metric units

Converting customary units

WORD PROBLEMS

HCF and LCM  word problems

Word problems on simple equations 

Word problems on linear equations 

Word problems on quadratic equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation 

Word problems on unit price

Word problems on unit rate 

Word problems on comparing rates

Converting customary units word problems 

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles 

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems 

Profit and loss word problems 

Markup and markdown word problems 

Decimal word problems

Word problems on fractions

Word problems on mixed fractions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and Venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed 

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS 

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Linear vs Exponential Growth

    May 23, 22 01:59 AM

    Linear vs Exponential Growth - Concept - Examples

    Read More

  2. Exponential vs Linear Growth Worksheet

    May 23, 22 01:42 AM

    Exponential vs Linear Growth Worksheet

    Read More

  3. SAT Math Questions on Exponential vs Linear Growth

    May 23, 22 01:34 AM

    SAT Math Questions on Exponential vs Linear Growth

    Read More