"Rotation transformation" is one of the four types of transformations in geometry.

Even though students can get this stuff on internet, they do not understand exactly what has been explained.

To make the students to understand the stuff "Rotation-transformation", we have explained the different rules which we apply to make rotation-transformation.

Once students understand the rules which they have to apply for rotation transformation, they can easily make rotation -transformation of a figure.

For example, if we are going to make rotation transformation of the point (5, 3) about 90° (clock wise rotation), after transformation, the point would be (3, -5).

Here the rule we have applied is (x, y) ------> (y, -x).

So we get ( 5, 3 ) -------> ( 3, -5 ).

Let us consider the following example to have better understanding of reflection.

**Question : **

Let A ( -2, 1), B (2, 4) and C (4, 2) be the three vertices of a triangle. If this triangle is rotated about 90° clockwise, what will be the new vertices A' , B' and C' ?

**Solution: **

**Step 1 : **

First we have to know the correct rule that we have to apply in this problem.

**Step 2 : **

Here triangle is rotated about 90° clock wise. So the rule that we have to apply here is (x , y) -------> (y , -x)

**Step 3 : **

Based on the rule given in step 1, we have to find the vertices of the reflected triangle A'B'C'

**Step 4 : **

**(x , y) ----------> (y , -x)**

A ( -2, 1 ) ------------ A' ( 1, 2 )

B ( 2, 4 ) ------------ B' ( 4, -2 )

C ( 4, 2 ) ------------ C' ( 2, -4 )

**Step 5 : **

Vertices of the reflected triangle are

A' ( 1, 2) , B ( 4, -2 ) and C' ( 2, -4)

1. First we have to plot the vertices of the pre-image.

2. In the above problem, the vertices of the pre-image are

A ( -2, 1 ) , B ( 2, 4 ) and C ( 4 , 2 )

3. When we plot these points on a graph paper, we will get the figure of the pre-image (original figure).

4. When we rotate the given figure about 90° clock wise, we have to apply the formula ( x , y ) --------> ( y , -x ).

5. When we apply the formula, we will get the following vertices of the image (rotated figure).

6. In the above problem, vertices of the image are

A' ( 1, 2 ) , B' ( 4, -2 ) and C' ( 2, -4 )

7. When plot these points on the graph paper, we will get the figure of the image (rotated figure).

After having gone through the stuff given above, we hope that the students would have understood "Rotation transformation".

Apart from the stuff given above, if you want to know more about "Transformation", please click here

If you need any other stuff in math, please use our google custom search here.

HTML Comment Box is loading comments...

**WORD PROBLEMS**

**HCF and LCM word problems**

**Word problems on simple equations **

**Word problems on linear equations **

**Word problems on quadratic equations**

**Area and perimeter word problems**

**Word problems on direct variation and inverse variation **

**Word problems on comparing rates**

**Converting customary units word problems **

**Converting metric units word problems**

**Word problems on simple interest**

**Word problems on compound interest**

**Word problems on types of angles **

**Complementary and supplementary angles word problems**

**Markup and markdown word problems **

**Word problems on mixed fractrions**

**One step equation word problems**

**Linear inequalities word problems**

**Ratio and proportion word problems**

**Word problems on sets and venn diagrams**

**Pythagorean theorem word problems**

**Percent of a number word problems**

**Word problems on constant speed**

**Word problems on average speed **

**Word problems on sum of the angles of a triangle is 180 degree**

**OTHER TOPICS **

**Time, speed and distance shortcuts**

**Ratio and proportion shortcuts**

**Domain and range of rational functions**

**Domain and range of rational functions with holes**

**Graphing rational functions with holes**

**Converting repeating decimals in to fractions**

**Decimal representation of rational numbers**

**Finding square root using long division**

**L.C.M method to solve time and work problems**

**Translating the word problems in to algebraic expressions**

**Remainder when 2 power 256 is divided by 17**

**Remainder when 17 power 23 is divided by 16**

**Sum of all three digit numbers divisible by 6**

**Sum of all three digit numbers divisible by 7**

**Sum of all three digit numbers divisible by 8**

**Sum of all three digit numbers formed using 1, 3, 4**

**Sum of all three four digit numbers formed with non zero digits**