ROTATION 180 DEGREES ABOUT THE ORIGIN WORKSHEET

1. Let P(-2, -2), Q(1, -2) R(2, -4) and S(-3, -4) be the vertices of a four sided closed figure. If this figure is rotated 180° about the origin, find the vertices of the rotated figure and graph.

2. Let K(1, 4), L(-1, 2), M(1, -2) and N(3, 2) be the vertices of a four sided closed figure. If this figure is rotated 180° about the origin, find the vertices of the rotated figure and graph.

3. Let E(1, 5), F(1, 1), G(5, 1) and H(5, 5) be the vertices of a four sided closed figure. If the figure is rotated 180° about the origin, find the vertices of the rotated figure and graph.

4. Let E(5, 4), F(1, 4), G(0, 2) and H(4, 2) be the vertices of a four sided closed figure. If the figure is rotated 180° about the origin, find the vertices of the rotated figure and graph.

5. Let K(0, -4), L(4, -4), M(4, -2) and N(1, -2) be the vertices of a four sided closed figure. If this figure is rotated 180° about the origin, find the vertices of the rotated figure and graph.

1. Answer :

Step 1 :

Here, the given is rotated 180° about the origin. So, the rule that we have to apply here is

(x, y) -------> (-x, -y)

Step 2 :

Based on the rule given in step 1, we have to find the vertices of the rotated figure.

Step 3 :

(x, y) ----> (-x, -y)

P(-2, -2) ----> P'(2, 2)

Q(1, -2) ----> Q'(-1, 2)

R(2, -4) ----> R'(-2, 4)

S(-3, -4) ----> S'(3, 4)

Step 4 :

Vertices of the rotated figure are

P'(2, 2), Q'(-1, 2), R'(-2, 4) and S'(3, 4)

2. Answer :

Step 1 :

Here, the given is rotated 180° about the origin. So, the rule that we have to apply here is

(x, y) ----> (-x, -y)

Step 2 :

Based on the rule given in step 1, we have to find the vertices of the rotated figure.

Step 3 :

(x, y) -----> (-x, -y)

K(1, 4) ----> K'(-1, -4)

L(-1, 2) ----> L'(1, -2)

M(1, -2) ----> M'(-1, 2)

N(3, 2) ----> N'(-3, -2)

Step 4 :

Vertices of the rotated figure are

K'(-1, -4), L'(1, -2), M'(-1, 2) and N'(-3, -2)

3. Answer :

Step 1 :

Here, the given is rotated 180° about the origin. So, the rule that we have to apply here is

(x, y) ----> (-x, -y)

Step 2 :

Based on the rule given in step 1, we have to find the vertices of the rotated figure.

Step 3 :

(x, y) ----> (-x, -y)

E(1, 5) ----> E'(-1, -5)

F(1, 1) ----> F'(-1, -1)

G(5, 1) ----> G'(-5, -1)

H( 5, 5) ----> H'(-5, -5)

Step 4 :

Vertices of the rotated figure are

E'(-1, -5), F'(-1, -1), G'(-5, -1) and H'(-5, -5)

4. Answer :

Step 1 :

Here, the given is rotated 180° about the origin. So, the rule that we have to apply here is

(x, y) ----> (-x, -y)

Step 2 :

Based on the rule given in step 1, we have to find the vertices of the rotated figure

Step 3 :

(x, y) ----> (-x, -y)

E(5, 4) ----> E'(-5, -4)

F(1, 4) ----> F'(-1, -4)

G(0, 2) ----> G'(0, -2)

H(4, 2) ----> H'(-4, -2)

Step 4 :

Vertices of the rotated figure are

E'(-5, -4), F'(-1, -4), G'(0, -2) and H'(-4, -2)

5. Answer :

Step 1 :

Here, the given is rotated 180° about the origin. So, the rule that we have to apply here is

(x, y) ----> (-x, -y)

Step 2 :

Based on the rule given in step 1, we have to find the vertices of the rotated figure.

Step 3 :

(x, y) ----> (-x , -y)

K(0, -4) ----> K'(0, 4)

L(4, -4) ----> L'(-4, 4)

M(4, -2) ----> M'(-4, 2)

N(1, -2) ----> N'(-1, 2)

Step 4 :

Vertices of the rotated figure are

K'(0, 4), L'(-4, 4), M'(-4, 2) and N'(-1, 2)

Solo Build It!

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Solving Word Problems Using Section Formula

    Aug 12, 22 02:47 AM

    Solving Word Problems Using Section Formula

    Read More

  2. Solving for a Specific Variable Worksheet

    Aug 12, 22 02:41 AM

    Solving for a Specific Variable Worksheet

    Read More

  3. Solving for a Specific Variable

    Aug 12, 22 02:37 AM

    Solving for a Specific Variable - Concept - Solved Examples

    Read More