ROLLE'S THEOREM PRACTICE WITH ANSWERS

Verify Rolle's theorem for the following functions:

(1) f (x) = sin x   0 ≤ x ≤ π

(2) f (x) = x², 0 ≤ x ≤ 1

(3) f (x) = |x - 1|, 0 ≤ x ≤ 2

(4) f (x) = 4 x³ - 9 x, -3/2 ≤ x ≤ 3/2

(5) Using Rolle's theorem find the points on the curve'

y  =  x2 + 1,

- 2 ≤ x ≤ 2 where the tangent is parallel to x - axis.

Problem 1 :

f(x)  =  sin x,   0 ≤ x ≤ π

Solution :

If f(x) be a real valued function that satisfies the following three conditions.

(1)  f(x) is defined and continuous on [0, π] 

(2)  f(x) is differentiable on the open interval (0, π).

f(x)  =  sin x

f(0)  =  sin 0  ==>  0

f(π)  =  sin π  ==> 0

f(0)  =  f(π)

from this we come to know that the given function satisfies all the conditions of Rolle's theorem. c ∈ (0,π) we can find the value of c by using the condition f '(c) = 0.

f(x)  =  sin x

f'(x)  =  cos x

f'(c)  =  cos c

f'(c)  =  0

cos c  =  0

c  =  (2n+1) (π/2)

       c  =  π/2,3π/2,5π/2,.............

Here π/2 is the only value that is in the given interval. So, the value of c = π/2.

Problem 2 :

f(x)  =  x2, 0 ≤ x ≤ 1

Solution :

If f(x) be a real valued function that satisfies the following three conditions.

(1)  f(x) is defined and continuous on [0, 1] 

(2)  f(x) is differentiable on the open interval (0, 1).

f(x)  =  x2

f(0)  =  02  ==>  0

f(1)  =  1 ==>  1

f(0)  ≠  f(1)

The given function is not satisfying all the conditions of mean value theorem. So, we cannot find the value of c.

Problem 3 :

f(x)  =  |x-1|, 0 ≤ x ≤ 2

Solution :

If f(x) be a real valued function that satisfies the following three conditions.

1) f(x) is defined and continuous on [0, 2] 

2) f(x) is not differentiable on (0, 2).

Since the given function is not satisfying all the conditions Rolle's theorem is not admissible.

Problem 4 :

f(x) = 4 x3-9x, -3/2 ≤ x ≤ 3/2

Solution :

If f(x) be a real valued function that satisfies the following three conditions.

(1)  f(x) is defined and continuous on [-3/2, 3/2] 

2) f(x) is not differentiable on (-3/2,3/2)

f(x) = 4x3-9 x

f(-3/2) = 4(-27/8)+27/2

= -27/2+27/2 

= 0

f(3/2)  = 4(27/8) - 27/2

=  27/2 - 27/2 

= 0

f(-3/2)  =  f(3/2)

c ∈ (-3/2, 3/2) we can find the value of c by using the condition f'(c)  =  0.

f(x)  =  4x3-9x

f'(x)  =  12x2- 9(1)

=  12x2-9

f'(c)  =  12c2-9

f'(c)  =  0

12c2-9  =  0

12c2  =  9

c2  =  9/12

c  =  ± √3/2

Problem 5 :

y = x² + 1    - 2 ≤ x ≤ 2 

Solution :

If f(x) be a real valued function that satisfies the following three conditions.

1) f(x) is defined and continuous on [-2,2] 

2) f(x) is not differentiable on the open interval (-2,2).

y  =  x2 + 1

f(-2)  =  (-2)2+1

=  4+1

=  5

f(2)  =  22+1

=  4+1

=  5

from this we come to know that the given function satisfies all the conditions of Rolle's theorem.

c ∈ (-2,2). We can find the value of c by using the condition f'(c)  =  0.

f(x)  =  x2 + 1

f'(x)  =  2x

f'(c)  =  2 c

f'(c)  =  0

2c  =  0  

c  =  0

f(0)  =  02+1

= 1

Therefore the required point on the curve is (0, 1).

Apart from the stuff given on, if you need any other stuff in math, please use our google custom search here. 

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Multi Step Algebra Word Problems

    Apr 23, 24 09:10 PM

    Multi Step Algebra Word Problems

    Read More

  2. Solving Multi Step Word Problems Worksheet

    Apr 23, 24 12:32 PM

    tutoring.png
    Solving Multi Step Word Problems Worksheet

    Read More

  3. Solving Multi Step Word Problems

    Apr 23, 24 12:07 PM

    Solving Multi Step Word Problems

    Read More