**Representation of functions :**

Here we are going to see "How to represent a function"

A function can be represented in the following four ways.

(i) A set of ordered pairs :

Let f : A ---> B

The set f = { (a , b) / a ∈ A and b ∈ B } of all ordered pairs represents the function

(ii) A table :

The elements of A and their respective images under f can be given in the form of a table.

(iii) An arrow diagram :

An arrow diagram indicates the elements of the domain of f and their respective images by means of arrows.

(iv) A graph :

The ordered pairs in the collection f are plotted as points (x, y) in the x-y plane. The graph of f is the totality of all such points.

**Example : **

Let A = { 0, 1, 2, 3 } and B = { 1, 3, 5, 7, 9 } be two sets. Let f : A ---> B be a function given by f (x) = 2x + 1. Represent this function as (i) a set of ordered pairs (ii) a table (iii) an arrow diagram and (iv) a graph.

**Solution :**

(i) A set of ordered pairs :

Here "x" ------> elements of A and f(x) ------> elements of B

Then, we have

f(0) = 2(0) + 1 = 0 + 1 = 1 -------> (0, 1)

f(1) = 2(1) + 1 = 2 + 1 = 3 -------> (1, 3)

f(2) = 2(2) + 1 = 4 + 1 = 5 -------> (2, 5)

f(3) = 2(3) + 1 = 6 + 1 = 7-------> (3, 7)

The given function f can be represented as a set of ordered pairs as

f = { (0, 1), (1, 3), (2, 5), (3, 7) }

(ii) A table :

Let us represent f using a table as shown below.

(iii) An arrow diagram :

(iv) A graph :

If the order pairs are written as points in the form (x, y), we will get the points (0, 1), (1, 3), (2, 5) and (3, 7).

These points are plotted on the x-y plane as shown below.

The totality of all points represent the graph of the function.

After having gone through the stuff given above, we hope that the students would have understood "Representation of functions".

Apart from the stuff given above, if you want to know more about "Representation of functions", please click here

If you need any other stuff in math, please use our google custom search here.

HTML Comment Box is loading comments...

**WORD PROBLEMS**

**HCF and LCM word problems**

**Word problems on simple equations **

**Word problems on linear equations **

**Word problems on quadratic equations**

**Area and perimeter word problems**

**Word problems on direct variation and inverse variation **

**Word problems on comparing rates**

**Converting customary units word problems **

**Converting metric units word problems**

**Word problems on simple interest**

**Word problems on compound interest**

**Word problems on types of angles **

**Complementary and supplementary angles word problems**

**Markup and markdown word problems **

**Word problems on mixed fractrions**

**One step equation word problems**

**Linear inequalities word problems**

**Ratio and proportion word problems**

**Word problems on sets and venn diagrams**

**Pythagorean theorem word problems**

**Percent of a number word problems**

**Word problems on constant speed**

**Word problems on average speed **

**Word problems on sum of the angles of a triangle is 180 degree**

**OTHER TOPICS **

**Time, speed and distance shortcuts**

**Ratio and proportion shortcuts**

**Domain and range of rational functions**

**Domain and range of rational functions with holes**

**Graphing rational functions with holes**

**Converting repeating decimals in to fractions**

**Decimal representation of rational numbers**

**Finding square root using long division**

**L.C.M method to solve time and work problems**

**Translating the word problems in to algebraic expressions**

**Remainder when 2 power 256 is divided by 17**

**Remainder when 17 power 23 is divided by 16**

**Sum of all three digit numbers divisible by 6**

**Sum of all three digit numbers divisible by 7**

**Sum of all three digit numbers divisible by 8**

**Sum of all three digit numbers formed using 1, 3, 4**

**Sum of all three four digit numbers formed with non zero digits**