## Rank Method in Matrix

In this page rank method in matrix we are going to see how to solve the given equations by using this method.

Procedure to find Rank method

(i) First we have to write the given equations in the form of AX = B.

(ii) Then we have to write augmented matrix [A,B].

(iii) Then we have to find rank-of-matrices A and [A,B] by applying elementary row operations.

(iv) If rank (A) = rank of [A,B] = number of unknowns then we can say that the system is consistent and it has unique solution.

(v) If rank (A) = rank of [A,B] < number of unknowns then we can say that the system is consistent and it has infinitely many solution.

(vi) If rank (A) ≠ rank of [A,B] then we can say that the system is not consistent and it has no solution.

Example 1:

Solve the following linear equation by rank-method

4x + 3y + 6z = 25

x + 5y + 7z = 13

2x + 9y + z = 1

Solution:

 4 3 6 25 1 5 7 13 2 9 1 1

[A,B]

˜

 4 3 6 25 1 5 7 13 2 9 1 1

R₂ <-> R₁

˜

 1 5 7 13 4 3 6 25 2 9 1 1

R₂ => R₂ - 4R₁

4         3         6        25

4         20       28       52

(-)       (-)       (-)       (-)

_________________________

0        -17      -22      -27

________________________

R₃ => R₃ - 2R₁

2          9         1         1

2         10       14       26

(-)       (-)       (-)       (-)

_________________________

0        -1       -13      -25

_________________________

˜

 1 5 7 13 0 -17 -22 -27 0 -1 -13 -25

R₂ => R₂ - 4R₁

R₃ => R₃ - 2R₁

 R₃ => 17R₃ - R₂ 0        -17        -221        -425       0        -17         -22           -27         (-)       (+)       (+)             (+)      __________________________________       0         0         -199           -398           __________________________________

˜

 1 5 7 13 0 -17 -22 -27 0 0 -199 -398

R₃ => 17R₃ - R₂

Rank (A) = 3

Rank [A,B] = 3

x + 5y + 7z = 13   --------(1)

-17y - 22z = -27  --------(2)

-199z = -398 --------(3)

z = -398/(-199)

z = 2

apply z = 2 in the second equation

-17y - 22 (2) = -27

-17y - 44 = -27

-17y = -27 + 44

-17y = 17

y = 17/(-17)

y = -1

apply z = 2 and y = -1 in the first equation to get the value of x

x + 5 (-1) + 7 (2) = 13

x - 5 + 14 = 13

x + 9 = 13

x = 13 - 9

x = 4

x = 4

y = -1

z = 2

 Questions Solution 1) Find the following linear equations by using rank method of matrix 2x + y + z = 5x + y + z = 4x - y + 2z = 1 Solution 2) Find the following linear equations by using rank method of matrix x + 2y + z = 72x - y + 2z = 4x + y - 2z = -1 Solution 3) Find the following linear equations by using rank method of matrix 2x + 5y + 7z = 52x + y + z = 92x + y - z = 0 Solution 4) Find the following linear equations by using rank method of matrix 3x + y - z = 22x - y + 2z = 62x + y - 2z = -2 Solution 5) Find the following linear equations by using rank method of matrix 2x - y + 3z = 9x + y + z = 6x - y + z = 2 rank method in matrix rank method in matrix rank method in matrix rank method in matrix Solution  2. Matrix Inverse Calculator - 2x2 Matrix

3. Matrix Inverse Calculator - 3x3 Matrix

4. Matrix Inverse Calculator - 4x4 Matrix

5. Cramer's Rule Calculator - 3x3 Matrix

6. Matrix Addition Calculator - 3x3 Matrix

7. Matrix Subtraction Calculator - 3x3 Matrix

8. Matrix Multiplication Calculator - 2x2 Matrix

9. Matrix Multiplication Calculator - 3x3 Matrix

10. Matrix Determinant Calculator - 3x3 & 2x2 Matrix

11. Matrix Addition Calculator - 2x2 Matrix

12. Matrix Subtraction Calculator- 2x2 Matrix

13. Matrix Addition Calculator - 4x4 Matrix

14. Matrix Subtraction Calculator- 4x4 Matrix

15. Matrix Multiplication Calculator - 4x4 Matrix

16. Matrix Determinant Calculator - 4x4 matrix

17. Squared Matrix Calculator

18. Transpose Matrix Calculator