PSAT SAMPLE QUESTIONS ONLINE

Question 1 :

 √100 √64  =  

(A)  8  (B)  10  (C)  18  (D)  80  (E)  164

Solution :

 √100 √64  =   √(10 ⋅ 10) √(8 ⋅ 8)

  =  10 (8)

  =  80

Hence the answer is 80.

Question 2 :

7.2 aliens  =  1 monster

1 monster  =  15.5 oranges

Using the conversion above, how many oranges are equal to 1 alien ?

(A)  0.46  (B)  1.95  (C)  2.15  (D)  22.7  (E)  111.6

Solution :

1 monster  =  7.2 aliens   ----(1)

1 monster  =  15.5 oranges  ----(2)

(1)  =  (2)

7.2 aliens  =  15.5 oranges

1 alien  =  15.5/7.2

=  2.15

Hence the answer is 2.15

Question 3 :

What is the greatest common factor of 147 and 198 ?

(A)  2  (B)  3  (C)  7  (D)  14  (E)  49

Solution :

There is no common divisor for 49 and 66. Hence the greatest common factor is 3.

Question 4 :

If x  =  7 and y  =  0, what is the value of 11x / (x - y) ?

(A)  0  (B)  7  (C)  10  (D)  11  (E)  77

Solution :

11x / (x - y)  =  11(7) / (7 - 0)  ==>  77/7  ==>  11

Hence the answer is 11.

Question 5 :

Heiga has 4 dogs, 3 cats and 2 birds. If she closes her eyes and picks one animal. What is the probability that it does not have 4 legs ?

(A)  3u/7  (B)  2/7  (C)  7/9  (D)  2/9  (E)  4/7

Solution :

Sample space  =  Total number of animals 

  =  3 + 4 + 2

n(S)  =  9

Dogs and cats have 4 legs, and birds has 2 legs.

Number of animals do not have 4 legs  =  2 

n(A)  =  2

P(A)  =  n(A) / n(S)

P(A)  =  2/9

Hence the required probability is 2/9.

Question 6 :

If y = x2⋅xx, what is y when x = 2 ?

(A)  16  (B)  8  (C)  4  (D)  32  (E)  0

Solution :

y  =  x2⋅xx

y  =  x(2 + x)

y  =  2(2 + 2)

y  =  24

y  =  16

Hence the answer is 16.

Question 7 :

Train A, travelling at 200 mph, leaves station A at 1 P.M train B travelling at 300 mph, leaves station B at 3 P.M. Both stations are directly across each other and X miles away. If the trains meet at 4 P.M, What is X ?

(A)  500 ml  (B)  900 ml  (C)  700 ml 

(D)  600 ml  (E)  400 ml

Solution :

From the given information, we know that both trains meet at 4 P.M.

Train A has traveled for 3 hours at the speed of 200 mph

Train B has traveled for 1 hour at the speed of 300 mph

Distance covered by both trains together 

=  600 miles + 300 miles

  =  900 miles

Hence both trains will meet each other apart 900 miles.

Question 8 :

Bernard is now y years old. Luis is 8 years older than Bernard. In terms of y, how old was Luis 5 years ago?

(A)  8y  (B)  8y - 5  (C)  y + 3  (D)  y + 13  (E)  y - 5

Solution :

Age of Bernard  =  y

Age of Luis  =  y + 8

5 years ago Luis age  =  y + 8 - 5

  =  y + 3

Question 9 :

In a figure above, ABC, DBE, EFG and CFH are straight line segments. What is the value of x ?

(A)  25  (B)  45  (C)  65  (D)  70  (E)  75

Solution : 

In a quadrilateral BEFC,

<GFH  =  <EFC  =  65 (Vertically opposite angles)

<CBE + <BEF + <EFC + <FCB  =  360

<CBE + 110 + <EFC + 110  =  360

<CBE + 220 + 65  =  360

<CBE  =  360 - 285

<CBE  =  75

x =  <CBE  =  75 (Vertically opposite angles)

Question 10 :

Which of the following shows the fraction 13/3, 37/8 and 19/4 in order from greatest to least ?

(A)  37/8, 19/4, 13/3

(B)  37/8, 13/3, 19/4

(C)  19/4, 13/3, 37/8

(D)  19/4, 37/8, 13/3

(E)  13/3, 19/4, 37/8

Solution :

In order to arrange the fractions from greatest to least, first let us change the denominator same. For that, we have to find L.C.M of 3, 8 and 4.

L.C.M  =  24

(13/3) ⋅ (8/8)  =  104/24   -----(1)

(37/8) ⋅ (3/3)  =  111/24   -----(2)

(19/4) ⋅ (6/6)  =  114/24   -----(3)

19/4 > 37/8 > 13/3

Apart from the stuff given above, if you would like to have any other stuff in math,  please use our google custom search here.

Solo Build It!

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Solving for a Specific Variable

    Aug 12, 22 02:37 AM

    Solving for a Specific Variable - Concept - Solved Examples

    Read More

  2. Nature of the Roots of a Quadratic Equation Worksheet

    Aug 10, 22 10:23 PM

    Nature of the Roots of a Quadratic Equation Worksheet

    Read More

  3. Nature of the Roots of a Quadratic Equation

    Aug 10, 22 10:18 PM

    Nature of the Roots of a Quadratic Equation - Concept - Examples

    Read More