PROVING TRIGONOMETRIC IDENTITIES WORKSHEET WITH SOLUTIONS

(1) Determine whether each of the following is an identity or not.

(i) cos2θ + sec2θ  =  2 + sinθ     

(ii) cot2θ + cosθ  =  sin2θ   

Solution

(2) Prove the following identities

(i) sec2θ + cosec2θ  =  sec2θcosec2θ        Solution

(ii) sinθ/(1 - cosθ)  =  cosecθ + cotθ       Solution

(iii) (1 - sinθ)/(1 + sinθ)  =  secθ - tanθ    Solution

(iv) cosθ/(secθ - tanθ)  =  1 + sinθ        Solution

(v) √(sec2θ + cosec2θ)  =  tanθ + cotθ      Solution

(vi) (1 + cosθ - sin2θ)/(sinθ)(1 + cosθ)  =  cotθ 

Solution

(vii) secθ(1 - sinθ)(secθ + tanθ)  =  1      Solution  

(viii) sinθ/(cosecθ + cotθ)  =  1 - cosθ      Solution

(3) Prove the following identities

(i) [sin(90 - θ)/(1 + sinθ)] + [cosθ/(1 - (cos(90 - θ))]

=  2secθ       Solution

(ii) tanθ/(1 - cotθ) + cotθ/(1 - tanθ)  =  1 + secθ cosecθ  

Solution

(iii) sin(90 - θ)/(1 - tanθ) + cos(90 - θ)/(1 - cotθ) 

=  cosθ + sinθ      Solution

(iv) [tan(90 - θ)/(cosecθ + 1)] + [(cosecθ + 1)/cotθ)]

=  2secθ       Solution

(v) (cotθ + cosecθ - 1)/(cotθ - cosecθ + 1) 

=  cosecθ + cotθ    Solution

(vi) (1 + cotθ - cosecθ)(1 + tanθ + secθ)  =  2        Solution

(vii) (sinθ - cosθ + 1)/(sinθ + cosθ - 1)  =  1/(secθ-tanθ) 

Solution

(viii) tanθ/(1 - tan2θ) = sinθsin(90 - θ)/[2sin2(90 - θ) - 1]  

(ix) [1/(cosecθ - cotθ)] - (1/sinθ) 

=  [(1/sinθ)] - [1/(cosecθ + cotθ)]             Solution

(x) (cot2θ  + sec2θ)/(tan2θ + cosec2θ)

=  sinθ cosθ(tanθ + cotθ)        Solution

(4) If x = a sec θ + b tan θ and y = a tan θ + b sec θ then prove that

x2 - y2  =  a2 - b2          Solution

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Solo Build It!

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Nature of the Roots of a Quadratic Equation Worksheet

    Aug 10, 22 10:23 PM

    Nature of the Roots of a Quadratic Equation Worksheet

    Read More

  2. Nature of the Roots of a Quadratic Equation

    Aug 10, 22 10:18 PM

    Nature of the Roots of a Quadratic Equation - Concept - Examples

    Read More

  3. Finding a Scale Factor Worksheet

    Aug 10, 22 10:28 AM

    Finding a Scale Factor Worksheet

    Read More