Problem 1 :
Prove the Transitive Property of Congruence for angles.
Problem 2 :
In the diagram shown below,
m∠3 = 40°, ∠1 ≅ ∠2, ∠2 ≅ ∠3
Prove m∠1 = 40°.
Problem 3 :
In the diagram shown below,
∠1 and ∠2 are right angles
Prove ∠1 ≅ ∠2
Problem 4 :
In the diagram shown below,
∠1 and ∠2 are supplements,
∠3 and ∠4 are supplements,
∠1 ≅ ∠4
Prove ∠2 ≅ ∠3
1. Answer :
To prove the Transitive Property of Congruence for angles, begin by drawing three congruent angles.
Label the vertices as A, B and C.
Given :
∠A ≅ ∠B
∠B ≅ ∠C
Prove :
∠A ≅ ∠C
Statements
∠A ≅ ∠B, ∠B ≅ ∠C
m∠A = m∠B
m∠B = m∠C
m∠A = m∠C
∠A ≅ ∠C
Reasons
Given
Definition of congruent angles
Definition of congruent angles
Transitive property of equality
Definition of congruent angles
2. Answer :
Statements
m∠3 = 40°
∠1 ≅ ∠2
∠2 ≅ ∠3
∠1 ≅ ∠3
m∠1 = m∠3
m∠1 = 40°
Reasons
Given
Transitive Property of Congruence
Definition of congruent angles
Substitution property of equality
3. Answer :
Statements
aaaa ∠1 and ∠2 are aa aaaaa right angles
m∠1 = 90°, m∠2 = 90°
m∠1 = m∠2
∠1 ≅ ∠2
Reasons
Given aaaaaaaaaaaaaaaaaaaaa aaaaaaaaa
Definition of right angle
Transitive property of equality
Definition of congruent angles
4. Answer :
Statements
∠1 and ∠2 are supplements
∠3 and ∠4 are supplements
∠1 ≅ ∠4
m∠1 + m∠2 = 180° m∠3 + m∠4 = 180°
m∠1 = m∠4
a ∠1 + ∠2 = ∠3 + ∠1 aaaaaa
m∠2 = m∠3
∠2 ≅ ∠3
Reasons
aaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaa
Given aaaaaaaaaaaaaaaaaaaaaa aaaaaa
Definition of Supplementary angles aaaaaaaaaaaaaaaaaaaa
Definition of congruent angles
Substitution property of equality aaaaaaaaaaaaaaaaaa
Subtraction property of equality
Definition of congruent angles
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jul 15, 25 01:24 PM
Jul 14, 25 08:54 PM
Jul 13, 25 09:51 AM