# PROVING PROBLEMS IN TRIGONOMETRY

Problem 1 :

Prove that

cos π/15 cos 2π/15 cos 3π/15 cos 4π/15 cos 5π/15 cos 6π/15 cos 7π/15  =  1/128

Solution :

=  cos π/15 cos 2π/15 cos 3π/15 cos 4π/15 cos 5π/15 cos 6π/15 cos 7π/15

π/15  =  180/15  =  12

2π/15  =  24 , 3π/ 15  =  36, 4π/ 15  =  48

5π/ 15  =  60, 6π/ 15  =  72, 7π/ 15  =  84

=  cos 12 cos 24 cos 36 cos 48 cos 60 cos 72 cos 84

To solve this problem, we use the property given below.

cos (60 - A) cos A cos (60 + A)  =  1/4 (cos 3A)

=  (1/2) cos 48 cos 12 cos 72 cos 24 cos 36 cos 84

48  =  60 - 12 and 72  =  60 + 12

36  =  60 - 24 and 84  =  60 + 24

=  (1/2) cos(60-12) cos12 cos(60+12)cos 36 cos 24 cos 84

=  (1/2) cos(60-12) cos12 cos(60+12)cos(60-24) cos 24 cos (60+24)

Instead of first 3 terms, we may use the formula (1/4) cos 3A

=  (1/2) (1/4) cos 36 (1/4) cos 72

=  (1/16) (√5 + 1)/4 (√5 - 1)/4

=  (1/256) (5 - 1)

=  (4/256)

=  1/128

Problem 2 :

Prove that

(sin8x cosx-sin6x cos3x)/(cos2x cosx-sin3x sin4x) = tan2x

Solution :

=  (sin8x cosx - sin6x cos3x)/(cos2x cosx - sin3x sin4x)

sin8x cosx  =  (1/2) (2 sin8x cosx)

=  (1/2) [sin 9x + sin 7x]  ---------(1)

sin6x cos3x  =  (1/2) (2 sin6x cos3x)

=  (1/2) [sin 9x + sin 3x]  ---------(2)

cos2x cosx  =  (1/2) (2 cos2x cosx)

=  (1/2) [cos 3x + cos x]  ---------(3)

sin3x sin4x  =  (1/2) (2 sin3x sin4x)

=  (1/2) [cos x - cos 7x]  ---------(4)

(1) - (2)

=  (1/2) [sin 9x + sin 7x] - (1/2) [sin 9x + sin 3x]

=  (1/2)[sin 9x + sin 7x - sin 9x - sin 3x]

=  (1/2)[sin 7x  - sin 3x]  -------(A)

(3) - (4)

=  (1/2) [cos 3x + cos x] - (1/2) [cos x - cos 7x]

=  (1/2) [cos 3x + cos x - cos x + cos 7x]

=  (1/2) [cos 3x + cos 7x] -------(B)

(A)/(B)

=  [sin 7x  - sin 3x]/[cos 3x + cos 7x]

Using the formula sin C - sin D and cos C + cos D, we get

=  2 cos5x sin 2x / 2 cos 5x cos 2x

=  tan 2x

Hence proved. Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6 