PROPERTIES OF RATIONAL NUMBERS

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

The properties of rational numbers are

βˆ™ Closure Property

βˆ™ Commutative Property

βˆ™ Associative Property

βˆ™ Distributive Property

βˆ™ Identity Property

βˆ™ Inverse Property

Let us explore these properties on the four binary operations (Addition, subtraction, multiplication and division) in mathematics.

Closure Property

(i) Addition : 

The sum of any two rational numbers is always a rational number. Thus, Q is closed under addition.

If ᡃ⁄b and αΆœβ„d are any two rational numbers, then

(ᡃ⁄b + αΆœβ„d) is also a rational number

Example : 

²⁄₉ + β΄β„₉ = βΆβ„₉

= β…”

β…” is a rational number

(ii) Subtraction : 

The difference between any two rational numbers is always a rational number.

Hence Q is closed under subtraction.

If ᡃ⁄b and αΆœβ„d are any two rational numbers, then

(ᡃ⁄b - αΆœβ„d) is also a rational number. 

Example : 

⁡⁄₉ - Β²β„₉ = Β³β„₉

= β…“

β…“ is a rational number.

(iii)  Multiplication :

The product of two rational numbers is always a rational number. Hence Q is closed under multiplication.

If ᡃ⁄b and αΆœβ„d are any two rational numbers, then

ᡃ⁄b x αΆœβ„d  = α΅ƒαΆœβ„bd

α΅ƒαΆœβ„bd is a rational number.

Example : 

⁡⁄₉ x Β²β„₉ = ΒΉβ°β„β‚ˆβ‚

ΒΉβ°β„β‚ˆβ‚ is a rational number.

(iv) Division :

The collection of non-zero rational numbers is closed under division.

If ᡃ⁄b and αΆœβ„d are two rational numbers, such that b β‰  0 and c/d β‰  0, then (ᡃ⁄b Γ· αΆœβ„d) is always a rational number. 

Example : 

β…” Γ· β…“ = β…” x Β³β„₁ 

= ²⁄₁

²⁄₁ is a rational number.

Commutative Property

(i) Addition : 

Addition of two rational numbers is commutative.

If ᡃ⁄b + αΆœβ„d are any two rational numbers, then

ᡃ⁄b + αΆœβ„d = αΆœβ„dᡃ⁄b

Example : 

²⁄₉ + β΄β„₉ = βΆβ„₉ = β…”

⁴⁄₉ + Β²β„₉ βΆβ„₉ = β…” 

So,

²⁄₉ + β΄β„₉ = β΄β„₉ + Β²β„₉

Therefore, Commutative Property is true for addition of two rational numbers.

(ii) Subtraction : 

Subtraction of two rational numbers is NOT commutative.

If ᡃ⁄b and αΆœβ„d are any two rational numbers, then

ᡃ⁄b - αΆœβ„d β‰  αΆœβ„d - α΅ƒβ„b

Example : 

⁡⁄₉ - Β²β„₉ = Β³β„₉ β…‘

²⁄₉ β΅β„₉ = β»Β³β„₉ β»ΒΉβ„₉

And,

⁡⁄₉ - Β²β„₉ β‰  Β²β„₉ β΅β„₉

Therefore, Commutative property is NOT true for subtraction of two rational numbers.

(ii) Multiplication :

Multiplication of two rational numbers is commutative.

If ᡃ⁄b and αΆœβ„d are any two rational numbers, then

ᡃ⁄b x αΆœβ„d = αΆœβ„α΅ƒβ„b 

Example : 

⁡⁄₉ x Β²β„₉ = ΒΉβ°β„β‚ˆβ‚

²⁄₉ β΅β„₉ = ΒΉβ°β„β‚ˆβ‚

So, 

⁡⁄₉ x Β²β„₉ = ²⁄₉ β΅β„₉

Therefore, Commutative property is true for multiplication of two rational numbers.

(iv) Division :

Division of two rational numbers is NOT commutative.

If ᡃ⁄b and αΆœβ„d are two rational numbers, then

ᡃ⁄b Γ· αΆœβ„d β‰  αΆœβ„Γ· ᡃ⁄b

Example :

β…” Γ· β…“ = β…” x Β³β„₁ Β²β„₁

β…“ Γ· β…” = β…“ Γ· ³⁄₂ = Β½

And, 

β…” Γ· β…“ β‰  β…“ Γ· β…”

Therefore, Commutative property is NOT true for division two rational numbers.

Associative Property

(i) Addition :

Addition of rational numbers is associative.

If ᡃ⁄b, αΆœβ„d and α΅‰β„f are any three rational numbers, then

ᡃ⁄+ (αΆœβ„α΅‰β„f) = (α΅ƒβ„αΆœβ„d) + α΅‰β„f

Example :

²⁄₉ + (⁴⁄₉ + β…‘) = ²⁄₉ + β΅β„₉ = β·β„₉ 

(²⁄₉ + ⁴⁄₉) + β…‘ = βΆβ„₉ + β…‘⁷⁄₉

So, 

²⁄₉ + (⁴⁄₉ + β…‘) = (²⁄₉ + ⁴⁄₉) + β…‘

Therefore, Associative Property is true for addition of rational numbers.

(ii) Subtraction :

Subtraction of rational numbers is NOT associative.

If ᡃ⁄b, αΆœβ„d and α΅‰β„f are any three rational numbers, then

ᡃ⁄- (αΆœβ„α΅‰β„f) β‰  (α΅ƒβ„αΆœβ„d) - α΅‰β„f

Example :

²⁄₉ - (⁴⁄₉ - β…‘) = ²⁄₉ - Β³β„₉ = β»ΒΉβ„₉

(²⁄₉ - ⁴⁄₉) - β…‘ = β»Β²β„₉ ΒΉβ„₉ = β»Β³β„₉ = β»ΒΉβ„₃

And,

²⁄₉ - (⁴⁄₉ - β…‘) β‰  (²⁄₉ - ⁴⁄₉) - β…‘

Therefore, Associative property is NOT true for subtraction of rational numbers.

(iii) Multiplication :

Multiplication of rational numbers is associative.

If ᡃ⁄b, αΆœβ„d and α΅‰β„f are any three rational numbers, then

ᡃ⁄b x (αΆœβ„x ᡉ⁄f) = (ᡃ⁄b x αΆœβ„dx ᡉ⁄f

Example :

²⁄₉ x (⁴⁄₉ x β…‘) = ²⁄₉ x β΄β„β‚ˆβ‚ = βΈβ„₇₂₉

(²⁄₉ x β΄β„₉) x β…‘ = βΈβ„β‚ˆβ‚ x β…‘ = ⁸⁄₇₂₉

So,

²⁄₉ x (⁴⁄₉ x β…‘) = (²⁄₉ x β΄β„₉) x β…‘

Therefore, Associative property is true for multiplication of rational numbers.

(iii) Division :

Division of rational numbers is NOT associative.

If ᡃ⁄b, αΆœβ„d and α΅‰β„f are any three rational numbers, then

ᡃ⁄b Γ· (αΆœβ„Γ· α΅‰β„f) β‰  (ᡃ⁄b Γ· αΆœβ„d) Γ· α΅‰β„f

Example :

²⁄₉ Γ· (⁴⁄₉ Γ· β…‘) = ²⁄₉ Γ· 4 = ΒΉβ„β‚β‚ˆ

(²⁄₉ Γ· β΄β„₉) Γ· β…‘ = Β½ Γ· β…‘ = βΉβ„β‚‚

And,

²⁄₉ Γ· (⁴⁄₉ Γ· β…‘) β‰  (²⁄₉ Γ· β΄β„₉) Γ· β…‘

Therefore, Associative property is NOT true for division of rational numbers.

Distributive Property

(i) Distributive Property of Multiplication over Addition :

Multiplication of rational numbers is distributive over addition.

If ᡃ⁄b, αΆœβ„d and α΅‰β„f  are any three rational numbers, then

ᡃ⁄x (αΆœβ„d ᡉ⁄f) = (ᡃ⁄x αΆœβ„d) + (ᡃ⁄x ᡉ⁄f)

Example :

β…“ x (β…– + β…•) :

β…“ x ⁽² ⁺ ¹⁾⁄₅

β…“ x ³⁄₅

³⁄₁₅

= β…• ----(1)

β…“ x β…– + β…“ x β…• :

= ²⁄₁₅ + ΒΉβ„₁₅

  = β½Β² ⁺ ¹⁾⁄₁₅

³⁄₁₅

= β…• ----(2)

From (1) and (2), 

β…“ x (β…– + β…•) = β…“ x β…– + β…“ x β…•

Therefore, Multiplication is distributive over addition.

(ii) Distributive Property of Multiplication over Subtraction :

Multiplication of rational numbers is distributive over subtraction.

If ᡃ⁄b, αΆœβ„d and α΅‰β„f  are any three rational numbers, then

ᡃ⁄x (αΆœβ„d ᡉ⁄f) = (ᡃ⁄x αΆœβ„d) + (ᡃ⁄x ᡉ⁄f)

Example :

β…“ x (β…– - β…•) :

β…“ x ⁽² ⁻ ¹⁾⁄₁₅

²⁄₁₅ - ΒΉβ„₁₅

  = β½Β² ⁻ ¹⁾⁄₁₅

 = ΒΉβ„₁₅ ----(1)

β…“ x β…– - β…“ x β…• :

= ²⁄₁₅ - ΒΉβ„₁₅

⁽² ⁻ ¹⁾⁄₁₅

¹⁄₁₅ ----(2)

From (1) and (2), 

β…“ x (β…– - β…•) = β…“ x β…– - β…“ x β…•

Therefore, Multiplication is distributive over subtraction.

Identity Property

(i) Additive Identity :

The sum of any rational number and zero is the rational number itself.

If ᡃ⁄b is any rational number, then

ᡃ⁄b + 0 = 0 + ᡃ⁄b = ᡃ⁄b

Zero is the additive identity for rational numbers.

Example : 

²⁄₇ + 0 = 0 + ²⁄₇ = Β²β„₇

(ii) Multiplicative Identity :

The product of any rational number and 1 is the rational number itself. β€˜1’ is the multiplicative identity for rational numbers.

If ᡃ⁄b is any rational number, then

ᡃ⁄b x 1 = 1 x α΅ƒβ„b = ᡃ⁄b

Example : 

⁡⁄₇ x 1 = 1 x ⁡⁄₇ = β΅β„₇

Inverse Property

(i) Additive Inverse :

-ᡃ⁄b is the negative or additive inverse of ᡃ⁄b.

If ᡃ⁄b is a rational number, then there exists a rational number -ᡃ⁄b such that

ᡃ⁄b + (-ᡃ⁄b) = -ᡃ⁄b + ᡃ⁄b = 0

Example : 

Additive inverse of β…— is -β…—.

Additive inverse of -β…— is β…—.

Additive inverse of 0 is 0 itself.

(ii) Multiplicative Inverse or Reciprocal :

For every rational number ᡃ⁄b, b β‰  0, there exists a rational number αΆœβ„d such that ᡃ⁄b x αΆœβ„d = 1.

Then, αΆœβ„d is the multiplicative inverse of ᡃ⁄b.

If b⁄ₐ is a rational number, then α΅ƒβ„b is the multiplicative inverse or reciprocal of it.

Example : 

The multiplicative inverse of β…” is ³⁄₂.

The multiplicative inverse of β…“ is 3.

The multiplicative inverse of 3 is β…“.

The multiplicative inverse of 1 is 1.

The multiplicative inverse of 0 is undefined.

Multiplication by Zero

Every rational number multiplied with 0 gives 0.

If ᡃ⁄b is any rational number, then

ᡃ⁄b x 0 = 0 x ᡃ⁄b = 0

Example : 

⁡⁄₇ x 0 = 0 x ⁡⁄₇ = 0

properties-of-rational-numbers.png

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

Β©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 38)

    Dec 08, 25 12:12 AM

    digitalsatmath416.png
    10 Hard SAT Math Questions (Part - 38)

    Read More

  2. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  3. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More