1. Simplify : √6  √15

2. Simplify : √35 ÷ √7

3. Simplify : 3√425 + 4√68

4. Simplify : √243 - 5√12 + √27

5. Simplify : √4 + 3√27 + 4√64

6. Simplify : 3√4  3√16

7. If √y = 1/5, then find the value of y.

8. Solve for x : 2√x - 2 = 10.

9. If 3a = 1/2, then find the value of a.

10. If (3√8)7 ⋅ (√2)-4 = 2k, then solve for k.

= √6  √15

= √(6  15)

= √(2  3  3  5)

= 3√(2  5)

= 3√10

= √35 ÷ √7

= √(35/7)

5

Decompose 425 and 68 into prime factors using synthetic division.

 √425 = √(5 ⋅ 5 ⋅ 17)√425 = 5√17 √68 = √(2 ⋅ 2 ⋅ 17)√68 = 2√17

3√425 + 4√68 :

= 3(5√17) + 4(2√17)

= 15√17 + 8√17

= 23√17

Decompose 243, 12 and 27 into prime factors using synthetic division.

√243 = √(3 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 3) = 9√3

√12 = √(2 ⋅ 2 ⋅ 3) = 2√3

√27 = √(3 ⋅ 3 ⋅ 3) = 3√3

√243 - 5√12 + √27 :

= 9√3 - 5(2√3) + 3√3

= 9√3 - 10√3 + 3√3

= 2√3

√4 = √(2 ⋅ 2) = 2

3√27 = 3(3 ⋅ 3 ⋅ 3) = 3

4√625 = 4√(5 ⋅ 5 ⋅ 5 ⋅ 5) = 5

√4 + 3√27 + 4√64 :

= 2 + 3 + 5

= 10

3√4  3√16

3√(4  16)

3√(4  4  4)

= 4

√y = 1/5

y = (1/5)2

y = 12/52

y = 1/25

2√x - 2 = 10

2√x = 12

√x = 6

x = 62

x = 36

3a = 1/2

a = (1/2)3

a = 13/23

a = 1/8

(3√8)7 ⋅ (√2)-4 = 2k

27 ⋅ (21/2)-4 = 2k

27 ⋅ 2-2 = 2k

27 - 2 = 2k

25 = 2k

k = 5

Apart from the stuff given aboveif you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

## Recent Articles

1. ### Multiplicative Inverse Worksheet

Jan 19, 22 09:34 AM

Multiplicative Inverse Worksheet

2. ### Multiplicative Inverse

Jan 19, 22 09:25 AM

Multiplicative Inverse - Concept - Examples