PROPERTIES OF MULTIPLICATION OF RATIONAL NUMBERS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

There are some properties of multiplying rational numbers like closure, commutative, associative, identity and distributive. 

Closure Property

The product of two rational numbers is always a rational number. Hence Q is closed under multiplication.

If a/b and c/d are any two rational numbers,

then (a/b)x (c/d) = ac/bd is also a rational number. 

Example :

5/9 x 2/9  =  10/81 is a rational number. 

Commutative Property

Multiplication of rational numbers is commutative.

If a/b and c/d are any two rational numbers,

then (a/b)x (c/d) = (c/d)x(a/b). 

5/9 x 2/9  =  10/81

2/9 x 5/9  =  10/81

Hence, 5/9 x 2/9  =  2/9 x 5/9

Therefore, Commutative property is true for multiplication.

Associative Property

Multiplication of rational numbers is associative.

If a/b, c/d and e/f  are any three rational numbers,

then a/b x (c/d x e/f)  =  (a/b x c/d) x e/f

Example :

2/9 x (4/9 x 1/9)  =  2/9 x 4/81  =  8/729 

(2/9 x 4/9) x 1/9  =  8/81 x 1/9  =  8/729

Hence, 2/9 x (4/9 x 1/9)  =  (2/9 x 4/9) x 1/9

Therefore, Associative property is true for multiplication.

Multiplicative Identity

The product of any rational number and 1 is the rational number itself. ‘One’ is the multiplicative identity for rational numbers.

If a/b is any rational number,

then a/b x 1 = 1 x a/b  =  a/b

Example : 

5/7 x 1 = 1x 5/7  =  5/7

Distributive Property

(i) Distributive Property of Multiplication over Addition :

Multiplication of rational numbers is distributive over addition.

If a/b, c/d and e/f  are any three rational numbers,

then a/b x (c/d + e/f)  =  a/b x c/d  +  a/b x e/f

Example :

1/3 x (2/5 + 1/5)  =  1/3 x 3/5  =  1/5

1/3 x (2/5 + 1/5)  =  1/3 x 2/5  +  1/3 x 1/5  =  (2 + 1) / 15 = 1/5

Hence, 1/3 x (2/5 + 1/5)  =  1/3 x 2/5  +  1/3 x 1/5

Therefore, Multiplication is distributive over addition.

(ii) Distributive Property of Multiplication over Subtraction :

Multiplication of rational numbers is distributive over subtraction.

If a/b, c/d and e/f  are any three rational numbers,

then a/b x (c/d - e/f)  =  a/b x c/d  -  a/b x e/f

Example :

1/3 x (2/5 - 1/5)  =  1/3 x 1/5  =  1/15

1/3 x (2/5 - 1/5) = 1/3 x 2/5 - 1/3 x 1/5 = (2 - 1)/15 = 1/15

Hence, 1/3 x (2/5 - 1/5)  =  1/3 x 2/5  -  1/3 x 1/5

Therefore, Multiplication is distributive over subtraction.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 38)

    Dec 08, 25 12:12 AM

    digitalsatmath416.png
    10 Hard SAT Math Questions (Part - 38)

    Read More

  2. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  3. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More