PROPERTIES OF LOGARITHMS WORKSHEET

Problem 1 :

Let b > 0 and b ≠ 1. Express y = bx in logarithmic form. Also state the domain and range of the logarithmic function.

Problem 2 :

Compute : 

log9 27 − log27 9

Problem 3 :

Solve for x :

log8x + log4x + log2x  =  11

Problem 4 :

Solve for x : 

log428x  =  2log28

Detailed Answer Key

Problem 1 :

Let b > 0 and b ≠ 1. Express y = bx in logarithmic form. Also state the domain and range of the logarithmic function.

Solution :

y  =  bx

logby  =  x

Domain  =  (0, ∞)

Range  =  (-∞, ∞)

Problem 2 :

Compute : 

log9 27 − log27 9

Solution :

log927  =  log933

log927  =  3log93

log927  =  3(1/log39)

log927  =  3 / log39

log927  =  3 / log332

log927  =  3 / 2log33

log927  =  3 / 2(1)

log927  =  3 / 2

log279  =  log2732

log279  =  2log273

log279  =  2(1/log327)

log279  =  2 / log327

log279  =  2 / log333

log279  =  2 / 3log33

log279  =  2 / 3(1)

log279  =  2 / 3

Therefore,

log927 − log279  =  3/2 - 2/3

log927 − log279  =  9/6 - 4/6

log927 − log279  =  (9 - 4) / 6

log927 − log279  =  5/6

Problem 3 :

Solve for x :

log8x + log4x + log2x  =  11

Solution :

log8x + log4x + log2x  =  11

(1 / logx8) + (1 / logx4) + (1 / logx2)  =  11

(1 / logx23) + (1 / logx22) + (1 / logx2)  =  11

(1 / 3logx2)  + (1 / 2logx2) +  (1 / logx2)  =  11

(2 / 6logx2)  + (3 / 6logx2) +  (6 / 6logx2)  =  11

(2 + 3 + 6) / 6logx2  =  11

 11 / 6logx2  =  11

Take reciprocal on both sides. 

6logx2 / 11  =  1 / 11

Multiply each side by 11. 

6logx2  =  1

Divide each side by 6. 

logx2  =  1/6

Change to exponential form. 

2  =  x1/6

Take power 6 on both sides. 

26  =  (x1/6)6

64  =  x

Therefore, the value of 'x' is 64.

Problem 4 :

Solve for x : 

log428x  =  2log28

Solution : 

log428x  =  2log28 -----(1)

Find the value of log28.

log28  =  log223

log28  =  3log22

log28  =  3(1)

log28  =  3

Substitute the value of log28 in (1). 

(1)-----> log428x  =  23

(1)-----> log428x  =  8

Change to exponential form. 

28x  =  48

28x  =  (22)8

28x  =  216

Equate the exponents. 

8x  =  16

Divide each side by 8.

x  =  2

Therefore, the value of 'x' is 2. 

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More