# PROPERTIES OF DIVISION

Property 1 :

When a number 'x' is divided by another number 'y', the number 'x' is divided into 'y' number of equal parts.

If 'y' divides 'x' without any remainder, then 'x' is evenly divisible by 'y'.

Examples :

(i)  When 21 is divided by 3, 21 is divided into three equal parts and the value of each part is 7.

(ii)  When we divide 35 by 5, we get

7 + 7 + 7 + 7 + 7

(iii)  When 35 is divided by 5, 35 is divided into 5 equal parts and the value of each part is 7. And also, there is nothing left over in 35.

So, 35 is evenly divisible by 5.

(iv)  When 35 is divided by 4, we get

8 + 8 + 8 + 8 + 3

There is remainder 5, when 35 is divided by 3.

So, 35 is not evenly divisible by 4.

Property 2 :

When a number is divided by another number, the division algorithm is, the sum of product of quotient & divisor and the remainder is equal to dividend.

More clearly,

Dividend  =  Quotient x Divisor + Remainder

The number which we divide is called the dividend.

The number by which we divide is called the divisor.

The result obtained is called the quotient.

The number left over is called the remainder.

Property 3 :

When a number is divided 1, the quotient is the number itself.

Example :

7/1  =  7

Property 4 :

When a number is divided by itself, the quotient is 1.

Example :

5/5  =  1

Property 5 :

When we divide any non-zero number by zero, the quotient is undefined. So, dividing any non-zero number by zero is meaningless.

Example :

3/0  =  Undefined

Property 6 :

When zero is divided by any non-zero number, the quotient is zero.

Example :

0/5  =  0

Property 7 :

When a number is divided by another number which is a multiple of 10 like 10, 100, 1000 etc., the decimal point in the number has to be moved to the left.

Examples :

123/10  =  12.3

2.36/100  =  0.0236

5658.36/1000  =  5.65836

Property 8 :

Positive number / Positive number  =  Positive number

Negative number / Negative number  =  Positive number

Negative number / Positive number  =  Negative number

Positive number / Negative number  =  Negative number

Note :

(i)  Division is not commutative.

Example :

15 ÷ 5  =  15/5  =  3

5 ÷ 15  =  5/15  =  1/3

Therefore,

15 ÷ 5  ≠  ÷ 15

(ii)  Division is not associative property.

Example :

12 ÷ (6 ÷ 2)  =  12 ÷ 3  =  4

(12 ÷ 6) ÷ 2  =  2 ÷ 2  =  1

Therefore,

12 ÷ (6 ÷ 2)  ≠  (12 ÷ 6) ÷ 2 Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

You can also visit our following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6 