# PROOF AND PERPENDICULAR LINES

## About "Proof and perpendicular lines"

Proof and perpendicular lines :

In this section, we are going to study different types of proof in geometry and results about perpendicular lines.

## Types of Proofs

(i) Two - Column Proof :

This is the most formal type of proof. It lists numbered statements in the left column and a reason for each statement in the right column.

(ii) Paragraph Proof :

This is the most formal type of proof. It lists numbered statements in the left column and a reason for each statement in the right column.

(ii) Flow Proof :

This type of proof uses the same statements and reasons as a two-column proof, but the logical flow connecting the statements is indicated by arrows.

Result 1 :

If two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular.

The diagram given below illustrates this.

Result 2 :

If two sides of two adjacent acute angles are perpendicular, then the angles are complementary.

The diagram given below illustrates this.

Result 3 :

If two lines are perpendicular, then they intersect to form four right angles.

The diagram given below illustrates this.

## Proof and Perpendicular Lines - Examples

Example 1 :

In the diagram given below,

∠5 and ∠6 are a linear pair

∠6 and ∠7 are a linear pair

Prove ∠5  ∠7 using two-column proof, paragraph proof and flow proof.

Solution :

Two-column Proof :

 Statements ∠5 and ∠6 are a linear pair∠6 and ∠7 are a linear pair∠5 and ∠6 are complementary∠6 and ∠7 are complementary∠5 ≅ ∠7 ReasonsGivenLinear pair postulateCongruence Supplements theorem

Paragraph Proof :

Because ∠5 and ∠6 are a linear pair, the linear pair postulate says that ∠5 and ∠6 are supplementary. The same reasoning shows that ∠6 and ∠7 are supplementary. Because ∠5 and ∠7 are both supplementary to ∠6, the congruent supplements theorem says that ∠5  ∠7.

Flow Proof :

Example 2 :

In the diagram given below, ∠1 and ∠2 are congruent and also a linear pair. Using flow proof, prove that the lines g and h are perpendicular.

Solution :

Example 3 :

If two sides of the adjacent acute angles (2x+3)° and aaa (4x-6)° are perpendicular, find the value of "x".

Solution :

According to result 2, if two sides of two adjacent acute angles are perpendicular, then the angles are complementary.

So, we have

(x+3)° + (2x-6)°  =  90°

x + 3 + 2x - 6  =  90

Simplify.

3x - 3  =  90

3x  =  93

Divide both sides by 3.

x  =  31

After having gone through the stuff given above, we hope that the students would have understood "Proof and perpendicular lines".

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

WORD PROBLEMS

HCF and LCM  word problems

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6