PROBLEMS ON TRIGONOMETRIC RATIOS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Problem 1 :

For the measures in the figure shown below, compute sine, cosine and tangent ratios of the angle θ.

Solution :

In the given right angled triangle, note that for the given angle θ, PR is the ‘opposite’ side and PQ is the ‘adjacent’ side.

Then, 

sinθ  =  opposite side/hypotenuse  =  PR/QR  =  35/37

cosθ  =  adjacent side/hypotenuse = PQ/QR  =  12/37

tanθ  =  opposite side / adjacent side  =  PR/PQ  =  35/12

Problem 2 :

Find the six trigonometric ratios of the angle θ using the diagram shown below. 

Solution :

In the given right angled triangle, note that for the given angle θ, AC is the ‘opposite’ side and AB is the ‘adjacent’ side.

And also, the length of the adjacent side 'AB' is not given. 

Find the length of AB.

By Pythagorean Theorem,

BC2  =  AB2 + AC2

252  =  AB2 + 72

625  =  AB2 + 49

Subtract 49 from each side. 

576  =  AB2

242  =  AB2

24  =  AB  

Then, 

sinθ  =  opposite side/hypotenuse  =   AC/ BC  =  7/25

cosθ  =  adjacent side/hypotenuse  =  AB/BC  =  24/25

tanθ  =  opposite side/adjacent side  =  AC/AB  =  7/24

cscθ  =  1/sinθ  =  25/7

secθ  =  1/cosθ  =  25/24

cotθ  =  1/tanθ  =  24/7

Problem 3 :

If tanA = 2/3, then find all the other trigonometric ratios. 

Solution :

tanA  =  opposite side/adjacent side  =  2/3

By Pythagorean Theorem,

AC2  =  AB2 + BC2

AC2  =  32 + 22

AC2  =  9 + 4

AC2  =  13

AC  =  √13

Then, 

sinA  =  opposite side/hypotenuse  =   BC/ AC  =  2/13

cosA  =  adjacent side/hypotenuse  =  AB/AC  =  3/√13

cscA  =  1/sinA  =  √13/2

secA  =  1/cosA  =  √13/3

cotA  =  1/tanA  =  3/2

Problem 4 :

If secθ  =  2/3, then find the value of

(2sinθ - 3cosθ)/(4sinθ - 9cosθ) 

Solution :

secθ  =  hypotenuse/adjacent side  =  13/5

By Pythagorean Theorem,

BC2  =  AB2 + AC2

132  =  52 + AC2

169  =  25 + AC2

Subtract 25 from each side. 

144  =  AC2

122  =  AC2

12  =  AC

Then, 

sinθ  =  opposite side/hypotenuse  =   AC/BC  =  12/13

cosθ  =  adjacent side/hypotenuse  =  AB/BC  =  5/13

(2sinθ - 3cosθ)/(4sinθ - 9cosθ) : 

=  (2 ⋅ 12/13 - 3 ⋅ 5/13)/(4 ⋅ 12/13 - 9 ⋅ 5/13)

=  (24/13 - 15/13)/(48/13 - 45/13)

=  [(24 - 15)/13]/[(48 - 45)/13]

=  (9/13)/(3/13)

=  (9/13)  (13/3)

=  9/3

=  3

So, 

(2sinθ - 3cosθ)/(4sinθ - 9cosθ)   =  3

To learn SOHCAHTOA in detail,

please click here

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 43)

    Jan 04, 26 01:38 AM

    10 Hard SAT Math Questions (Part - 43)

    Read More

  2. 90 Degree Clockwise Rotation

    Jan 01, 26 06:58 AM

    90degreeclockwiserotation1.png
    90 Degree Clockwise Rotation - Rule - Examples with step by step explanation

    Read More

  3. US Common Core K-12 Curriculum Algebra Solving Systems of Equations

    Jan 01, 26 04:51 AM

    US Common Core K-12 Curriculum - Algebra : Solving Systems of Linear Equations

    Read More