PROBLEMS ON MATHEMATICAL INDUCTION

About "Problems on Mathematical Induction"

Problems on Mathematical Induction :

Here we are going to see some mathematical induction problems with solutions.

Define mathematical induction :

Mathematical Induction is a method or technique of proving mathematical results or theorems

The process of induction involves the following steps.

Problems on Mathematical Induction

Question 1 :

Using the Mathematical induction, show that for any natural number n ≥ 2,

[1/(1 + 2)] + [1/(1 + 2 + 3)] + [1/(1 + 2 + 3 + 4)]  + · · · + [1/(1 + 2 + 3 + · · · + n)]  =  (n − 1)/(n + 1)

Solution :

Let p(n) =  [1/(1 + 2)] + [1/(1 + 2 + 3)] + [1/(1 + 2 + 3 + 4)]  + · · · + [1/(1 + 2 + 3 + · · · + n)]   =  (n − 1)/(n + 1)

Step 1 :

put n = 2

p(2)  =  p(n) =  [1/(1 + 2)]  =  (2 − 1)/(2 + 1)

  1/3  =  1/3

Hence p(2) is true.

Step 2 :

Let us assume that the statement is true for n = k

p(k) =  [1/(1 + 2)] + [1/(1 + 2 + 3)] + [1/(1 + 2 + 3 + 4)]  + · · · + [1/(1 + 2 + 3 + · · · + k)]   =  (k − 1)/(k + 1)  ----(1)  

We need to show that P(k + 1) is true. Consider,

Step 3 :

Let us assume that the statement is true for n = k + 1

p(k+1) 

p(n) =  [1/(1 + 2)] + [1/(1 + 2 + 3)] + [1/(1 + 2 + 3 + 4)]  + · · · + [1/(1 + 2 + 3 + · · · + (k+1))]   =  (n − 1)/(n + 1)

By applying (1) in this step, we get

k(k+1)/(k+1)(k+2)  =  k/(k+2)

k/(k+2)  =  k/(k+2)

Hence, by the principle of mathematical induction  n ≥ 2,

[1/(1 + 2)] + [1/(1 + 2 + 3)] + [1/(1 + 2 + 3 + 4)]  + · · · + [1/(1 + 2 + 3 + · · · + n)]  =  (n − 1)/(n + 1)

Question 2 :

Using the Mathematical induction, show that for any natural number n,

[1/(1.2.3)]+[1/(2.3.4)]+[1/(3.4.5)]+ · · · +[1/(n.(n + 1).(n + 2))]

   =  n(n + 3)/4(n + 1)(n + 2)

Solution :

Let p(n)  = [1/(1.2.3)]+[1/(2.3.4)]+[1/(3.4.5)]+ · · · +[1/(n.(n + 1).(n + 2))]  =  n(n + 3)/4(n + 1)(n + 2)

Step 1 :

Put n = 1

[1/(1.(1 + 1).(1 + 2))]  =  1(1 + 3)/4(1 + 1)(1 + 2)

1/(1.2.3)  =  1(4)/4(2)(3)

1/(1.2.3) =  1/(1.2.3)

Hence p(1) is true.

Step 2 :

Let us assume that the statement is true for n = m

[1/(1.2.3)]+[1/(2.3.4)]+[1/(3.4.5)]+ · · · +[1/(m.(m+1).(m+2))]  =  m(m + 3)/4(m + 1)(m + 2)  --(1)  

We need to show that P(m + 1) is true. Consider,

Step 3 :

Let us assume that the statement is true for n = m + 1

p(m+1) 

By expanding L.H.S, we get 

  =  (m(m2+6m+9) + 4)/4(m+1)(m+2)(m+3)  

  =  (m3 + 6m+ 9m + 4)/4(m+1)(m+2)(m+3)  

  =  (m+1)2(m+4)/4(m+1)(m+2)(m+3)  

  =  (m+1)(m+4)/4(m+1)(m+2)(m+3)  --->R.H.S

Hence, by the principle of mathematical induction [1/(1.2.3)]+[1/(2.3.4)]+[1/(3.4.5)]+ · · · +[1/(n.(n + 1).(n + 2))]

   =  n(n + 3)/4(n + 1)(n + 2)

After having gone through the stuff given above, we hope that the students would have understood "Problems on Mathematical Induction" 

Apart from the stuff given above, if you want to know more about "Problems on Mathematical Inductions". Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Multi Step Algebra Word Problems

    Apr 23, 24 09:10 PM

    Multi Step Algebra Word Problems

    Read More

  2. Solving Multi Step Word Problems Worksheet

    Apr 23, 24 12:32 PM

    tutoring.png
    Solving Multi Step Word Problems Worksheet

    Read More

  3. Solving Multi Step Word Problems

    Apr 23, 24 12:07 PM

    Solving Multi Step Word Problems

    Read More