PROBLEMS ON ARITHMETIC PROGRESSION

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Problem 1 :

Find the middle term(s) of the following arithmetic progression.

9, 15, 21, 27,…,183.

Solution :

In order to find the middle term of the sequence, first we have to know how many terms are in the given sequence.

n = [(l - a)d] + 1

a = 9, d = 15 - 9  ==>  6 and l = 183

n = [(183 - 9)/6] + 1

 n = (174 / 6) + 1

n = 29 + 1  =  30

n = 30(even)

So, the middle terms are

(n/2)th term and [(n/2) + 1]th term

15th term  =  a + 14d

=  9 + 14(6)

=  93

16th term  =  a + 15d

=  9 + 15(6)

=  99

Problem 2 :

If nine times ninth term is equal to the fifteen times fifteenth term of an arithmetic progression, show that six times twenty fourth term of the same arithmetic progression is zero.

Solution :

9t9  =  15t15

9(a + 8d)  =  15(a + 14d)

9a + 72d  =  15a + 210 d 

15a - 9a + 210d - 72d  =  0

6a + 138d  =  0

6(a + 23d)  =  0

a + 23d  =  0

t24  =  0

Hence proved.

Problem 3 :

If 3 + k, 18 - k, 5k + 1 are in arithmetic progression, then find the value of k. 

Solution :

If a, b, c are in A.P then 2b = a + c

a = 3 + k, b = 18 - k and c = 5k + 1

2(18 - k)  =  3 + k + 5k + 1

2(18 - k)  =  6k + 4

18 - k = 3k + 2

18 - 2  =  3k + k

4k  =  16

k = 4

So, the value of k is 4.

Problem 4 :

Find x, y and z, given that the numbers x, 10, y, 24, z are in arithmetic progression. 

Solution :

Since the given sequence is arithmetic progression,

t2 - t1  =  10 - x  ---(1)

t3 - t2  =  y - 10 ---(2)

t4 - t3  =  24 - y ---(3)

t5 - t4  =  z - 24 ---(4)

(1)  =  (2)

10 - x  =  y - 10

x + y  =  20

(2) = (3)

y - 10  =  24 - y

y + y  =  24 + 10

2y  =  34

y  =  17

By applying the value of y in x + y  =  20

x + 17  =  20

x  =  3

(3)  =  (4)

24 - y  =  z - 24

y + z  =  24 + 24

y + z  =  48

17 + z  =  48

z  =  31

So, the values of x, y and z are 3, 17, 31 respectively.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. SAT Math Problems on Angles

    Feb 21, 26 12:04 PM

    problemsonangles2.png
    SAT Math Problems on Angles

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 9)

    Feb 21, 26 10:41 AM

    digitalsatmath349.png
    Digital SAT Math Problems and Solutions (Part - 9)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 8)

    Feb 21, 26 05:48 AM

    digitalsatmath410.png
    Digital SAT Math Problems and Solutions (Part - 8)

    Read More