PROBLEMS INVOLVING MAXIMUM AND MINIMUM VALUES IN DERIVATIVES

Optimization is a process of finding an extreme value (either maximum or minimum) under certain conditions.

A procedure for solving for an extremum or optimization problems.

Step 1 :

Draw an appropriate figure and label the quantities relevant to the problem.

Step 2 :

Find a expression for the quantity to be maximized or minimized.

Step 3 :

Using the given conditions of the problem, the quantity to be extremized .

Step 4 :

Determine the interval of possible values for this variable from the conditions given in the problem.

Step 5 :

Using the techniques of extremum (absolute extremum, first derivative test or second derivative test) obtain the maximum or minimum.

Problem 1 :

Find the dimensions of the largest rectangle that can be inscribed in a semi circle of radius r cm.

Solution :

Let θ be the angle made by OP with the positive direction of x axis.

Area of rectangle A(θ)  =  (2 r cos θ) (r sinθ)

=  r2 sin 2θ

A'(θ)  =  2r2 cos 2θ

A'(θ)  =  0

2r2 cos 2θ  =  0

2θ  =  cos-1(0)

2θ  =  π/2

θ  =  π/4

A''(θ)  =  -4r2 sin 2θ

A''(π/4)  =  -4r2 sin 2(π/4)

A''(π/4)  =  -4 r2 < 0 (Maximum)

Length of the rectangle  =  2r cos θ  =  2rcos(π/4)

=  2 r (1/√2)

=  2 r (1/√2)

=  √2r

Width of the rectangle  =  r sin θ

=  r sin (π/4)

=  r (1/√2)

=  r/√2

Problem 2 :

A manufacturer wants to design an open box having a square base and a surface area of 108 sq.cm. Determine the dimensions of the box for the maximum volume.

Solution :

Let x be the side length of square base box.

Volume of the box  =  length x width x height

Let h be the height 

Surface area of box  =  x2 + 4xh

x2 + 4xh  =  108

4xh  =  108-x2

h  =  (108-x2)/4x  ---(1)

Volume of the box  =  Base area x height

V(x)  =  x2 (h)  ---(2)

V(x)  =  x2(108-x2)/4x

V(x)  =  (108x-x3)/4

V'(x)  =  (108 - 3x2)/4

V'(x)  =  0

(108 - 3x2)/4  =  0

3x2  =  108

x2  =  36

x  =  6

V''(x)  =  -6x/4

V''(x)  =  -3x/2

V''(6)  =  -3(6)/2

V''(6)  =  -9 < 0 (Maximum)

Applying x  =  6 in (1), we get

h  =  (108-x2)/4x

h  =  (108-36)/24

h  = 3 cm

So, side length of the base is 4 cm and height is 3 cm.

Problem 3 :

The volume of a cylinder is given by the formula

V  =  π r2h

Find the greatest and least values of V if r + h = 6.

Solution :

Given :

V  =  π r2h and r + h  =  6

h  =  6 - r

V(r)  =  π r2(6-r)

V(r)  =  π(6r2-r3)

V'(r)  =  π(12r-3r2)

V'(r)  =  0

3rπ(4-r)  =  0

r  =  0 and r  =  4

V''(r)  =  π(12-6r)

V''(0)  =  π(12-6(0))

V''(0)  =  12π > 0

Minimum

V''(r)  =  π(12-6r)

V''(4)  =  π(12-6(4))

V''(0)  =  -12π < 0

Maximum

r+h  =  6

Case 1 : When r  =  0, h  =  6

Case 2 : When r  =  4, h  =  2

V  =  π r2h

By applying case 1,  V  =  0

By applying case 2,  V  =  π (4)2(2)  ==>  32π

So, the greatest value of V is 32π and least value of V is 0.

Problem 4 :

A hollow cone with base radius a cm and height b cm is placed on a table. Show that the volume of the largest cylinder that can be hidden underneath is 4/times volume of the cone.

Solution :

Volume of cone  =  (1/3)π r2h----(1)

Here r  =  a and h  =  b

=  (1/3)π r2h

=  (1/3)π a2b

OAB and CDB are similar.

OA/DC  =  OB/DB

b/h  =  a/(a-r)

h  =  (b/a)(a-r)

V(r)  =  (1/3)π r2[(b/a)(a-r)]

V(r)  =  (b/3a)π r2(a-r)

V(r)  =  (bπ/3a) (ar2-r3)

V'(r)  =  (bπ/3a) (2ar-3r2)

V'(r)  =  (bπ/3a) (2ar-3r2)  =  0

r(2a-3r)  =  0

r  =  0, r  =  2a/3

V''(r)  =  (bπ/3a) (2a-6r)

V''(0)  =  (bπ/3a) (2a) > 0 Minimum

V''(r)  =  (bπ/3a) (2a-6(2a/3))

V''(2a/3)  =  (bπ/3a) (2a-6(2a/3)) < 0 Maximum

Volume of cylinder  =  πr2h

r  =  2a/3 and h  =  (b/a)(a-(2a/3))

h  =  (b/a) (a/3)

h  =  b/3

=  π(2a/3)2(b/3)

Volume of cylinder  =  (4/9)(1/3)πa2b

Volume of cylinder  =  (4/9)Volume of cone

Problem 5 :

An open box is to be made by cutting congruent squares of side length x from the corners of a 20 by 25 inch sheet of tin and bending up the sides. How large should the squares be to make the box hold as much as possible ? What is the resulting maximum volume ?

problems-derivative-on-max-and-min-q1

Solution :

Length = 25 - x - x

= 25 - 2x

Width = 20 - x - x 

= 20 - 2x

height = x

Volume of the box = length · width · height

= (25 - 2x)(20 - 2x) x

= x(500 - 50x - 40x + 4x2)

= x(500 - 90x + 4x2)

V(x) = 500x - 90x2 + 4x3

V'(x) = 500 - 180x + 12x2

500 - 180x + 12x2 = 0

125 - 45x + 3x2 = 0

3x2 - 45x + 125 = 0

a = 3, b = -45 and c = 125

(-b ± √b2 - 4ac)/2a

= [45  ± √452 - 4(3)(125)]/2(3)

= [45  ± √2025 - 1500)]/6

= [45  ± √525)]/6

= 11.31, 3.68

V'(x) = 500 - 180x + 12x2

V''(x) = - 180 + 24x

When x = 3.68

V''(3.68) = - 180 + 24(3.68)

= -180 + 88.32

= - < 0 maximum

When x = 3.68, the box will have maximum volume.

V(x) = 500x - 90x2 + 4x3

V(3.68) = 500(3.68) - 90(3.68)2 + 4(3.68)3

= 1840 - 90(13.54) + 4(49.83)

= 1840 - 1218.6 + 199.44

= 820.84 cm3

So, the required volume is 820.84 cm3

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 154)

    Apr 30, 25 11:12 PM

    digitalsatmath187.png
    Digital SAT Math Problems and Solutions (Part - 154)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 153)

    Apr 29, 25 12:18 PM

    digitalsatmath185.png
    Digital SAT Math Problems and Solutions (Part - 153)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 152)

    Apr 28, 25 11:54 AM

    Digital SAT Math Problems and Solutions (Part - 152)

    Read More