PROBLEMS INVOLVING CONDITIONAL IDENTITIES IN TRIGONOMETRY

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Trigonometric identities are true for all admissible values of the angle involved. There are some trigonometric identities which satisfy the given additional conditions. Such identities are called conditional trigonometric identities.

Problem 1 :

If A + B + C = 2s, then prove that

sin(s − A) sin(s − B) + sins sin(s − C)  =  sinA sinB

Solution :

Given : A + B + C  =  2s.

sin(s − A) sin(s − B) :

=  (2/2)sin(s − A) sin(s − B)

=  (1/2)[cos(s - A - s + B) - cos(s - A + s - B)]

=  (1/2)[cos(B - A) - cos(2s - A - B)]

=  (1/2)[cos(B - A) - cos(A + B + C - A - B)]

=  (1/2)[cos(B - A) - cosC]  

sins sin(s − C) :

=  (2/2)sins sin(s − C)

=  (1/2)[2 sins sin(s - C)]

=  (1/2)[cosC - cos(2s - C)]  

sin(s − A) sin(s − B) + sins sin(s − C) :

=  (1/2)[cos(B - A) - cosC] + (1/2)[cosC - cos(2s - C)] 

=  (1/2)[cos(B - A) - cosC + cosC - cos(2s - C)] 

=  (1/2)[cos(B - A) - cos(A + B + C - C)] 

=  (1/2)[cos(B - A) - cos(A + B)] 

=  (1/2)[-2sinB sin(-A)]

=  sinA sin B

Hence proved

Problem 2 :

If x + y + z = xyz, then prove that

(2x/1 − x2) + (2y/1 − y2) + (2z/1 − z2)

=  (2x/1 − x2) (2y/1 − y2) (2z/1 − z2)

Solution :

x + y + z  =  xyz

Let x = tanA, y = tanB and z = tanC.

Then, 

x + y + z  =  xyz

tanA + tanB + tanC  =  tanA tanB tanC

tanA + tanB  =  tanA tanB tanC - tanC

tanA + tanB  =  tanC(tanAtanB - 1)

tanA + tanB  =  -tanC(1 - tanAtanB)

(tanA + tanB) / (1 - tanAtanB)  =  - tanC

tan(A + B)  =  tan(-C)

A + B  =  -C

Multiply each side by 2. 

2A + 2B  =  -2C

tan(2A + 2B) =  tan(- 2C)

(tan2A + tan2B)/(1 - tan2Atan2B)  =  -tan2C

(tan2A + tan2B)  =  -tan2C(1 - tan2Atan2B)

tan2A + tan2B + tan2C  =  tan2Atan2Btan2C -----(1)

tan2A  =  2tanA / 1 - tan2A  =  2x/(1 - x2)

tan2B  =  2tanB / 1 - tan2B  =  2y/(1 - y2)

tan2C  =  2tanC / 1 - tan2C  =  2z/(1 - z2)

Substitute these in (1). 

2x/(1 -x2) + 2y/(1 -y2) + 2z/(1 - z2

=  2x/(1 -x2)  2y/(1 -y2) 2z/(1 - z2)

Hence proved.

Problem 3 :

If A + B + C =  π then prove that

sin A + sin B + sin C = 4 cos (A/2) cos (B/2) cos (C/2) 

Solution :

L.H.S

sin A + sin B + sin C

= 2 sin (A + B)/2 cos (A - B)/2 + sin C

Since  A + B + C =  π

A + B = π - C -----(1)

(A + B)/2 = (π - C)/2

π/2 - C/2

= 2 sin (π/2 - C/2) cos (A - B)/2 + sin C

= 2 cos (C/2) cos (A - B)/2 + sin C

= 2 cos (C/2) cos (A - B)/2 + 2 sin (C/2) cos (C/2)

= 2 cos (C/2) [cos (A - B)/2 + sin (C/2)]

= 2 cos (C/2) [cos (A - B)/2 + sin  (π - (A + B))/2]

= 2 cos (C/2) [cos (A - B)/2 + sin (π/2) -  (A + B)/2]

= 2 cos (C/2) [cos (A - B)/2 + cos (A + B)/2]

= 2 cos (C/2) [2cos ((A - B) + (A + B))/4 cos ((A - B) - (A + B))/4]

= 2 cos (C/2) [2cos ((A - B + A + B)/4 cos (A - B - A - B)/4]

= 2 cos (C/2) [2cos (2A/4) cos (- 2B/4)]

= 2 cos (C/2) [2cos (A/2) cos (B/2)]

= 4 cos (A/2) cos (B/2) cos (C/2)

R.H.S

Hence it is proved

In Δ ABC, prove that

(i) tan A + tan B + tan C = tan A . tan B . tan C

(ii) cot A . cot B + cot B . cot C + cot C . cot A = 1

Solution :

In a triangle, sum of interior angles = 180

A + B + C = π

A + B  = π - C

tan (A + B) = tan (π - C)

(i) tan A + tan B + tan C = tan A . tan B . tan C

(tan A + tan B) / 1 - tan A tan B = tan (π - C)

(tan A + tan B) / 1 - tan A tan B = -tan C

tan A + tan B =  -tan C(1 - tan A tan B)

tan A + tan B =  -tan C + tan A tan B tan C

tan A + tan B + tan C = tan A tan B tan C

ii)  From tan A + tan B + tan C = tan A tan B tan C

(tan A + tan B + tan C)/tan A tan B tan C = 1

(tan A / tan A tan B tan C) + (tan B / tan A tan B tan C ) + (tan C / tan A tan B tan C) = 1

(1/tan B tan C) + (1/tan A tan C ) + (1/tan A tan B) = 1

cot B cot C + cot A cot C + cot A cot B = 1

Hence it is proved

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 40)

    Dec 18, 25 06:27 PM

    digitalsatmath422.png
    10 Hard SAT Math Questions (Part - 40)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 13)

    Dec 18, 25 12:26 PM

    Digital SAT Math Problems and Solutions (Part - 13)

    Read More

  3. 90 Degree Clockwise Rotation

    Dec 18, 25 09:42 AM

    90degreeclockwiserotation1.png
    90 Degree Clockwise Rotation - Rule - Examples with step by step explanation

    Read More