PROBLEMS INVOLVING CONDITIONAL IDENTITIES IN TRIGONOMETRY

Trigonometric identities are true for all admissible values of the angle involved. There are some trigonometric identities which satisfy the given additional conditions. Such identities are called conditional trigonometric identities.

Problem 1 :

If A + B + C = 2s, then prove that

sin(s − A) sin(s − B) + sins sin(s − C)  =  sinA sinB

Solution :

Given : A + B + C  =  2s.

sin(s − A) sin(s − B) :

=  (2/2)sin(s − A) sin(s − B)

=  (1/2)[cos(s - A - s + B) - cos(s - A + s - B)]

=  (1/2)[cos(B - A) - cos(2s - A - B)]

=  (1/2)[cos(B - A) - cos(A + B + C - A - B)]

=  (1/2)[cos(B - A) - cosC]  

sins sin(s − C) :

=  (2/2)sins sin(s − C)

=  (1/2)[2 sins sin(s - C)]

=  (1/2)[cosC - cos(2s - C)]  

sin(s − A) sin(s − B) + sins sin(s − C) :

=  (1/2)[cos(B - A) - cosC] + (1/2)[cosC - cos(2s - C)] 

=  (1/2)[cos(B - A) - cosC + cosC - cos(2s - C)] 

=  (1/2)[cos(B - A) - cos(A + B + C - C)] 

=  (1/2)[cos(B - A) - cos(A + B)] 

=  (1/2)[-2sinB sin(-A)]

=  sinA sin B

Hence proved

Problem 2 :

If x + y + z = xyz, then prove that

(2x/1 − x2) + (2y/1 − y2) + (2z/1 − z2)

=  (2x/1 − x2) (2y/1 − y2) (2z/1 − z2)

Solution :

x + y + z  =  xyz

Let x = tanA, y = tanB and z = tanC.

Then, 

x + y + z  =  xyz

tanA + tanB + tanC  =  tanA tanB tanC

tanA + tanB  =  tanA tanB tanC - tanC

tanA + tanB  =  tanC(tanAtanB - 1)

tanA + tanB  =  -tanC(1 - tanAtanB)

(tanA + tanB) / (1 - tanAtanB)  =  - tanC

tan(A + B)  =  tan(-C)

A + B  =  -C

Multiply each side by 2. 

2A + 2B  =  -2C

tan(2A + 2B) =  tan(- 2C)

(tan2A + tan2B)/(1 - tan2Atan2B)  =  -tan2C

(tan2A + tan2B)  =  -tan2C(1 - tan2Atan2B)

tan2A + tan2B + tan2C  =  tan2Atan2Btan2C -----(1)

tan2A  =  2tanA / 1 - tan2A  =  2x/(1 - x2)

tan2B  =  2tanB / 1 - tan2B  =  2y/(1 - y2)

tan2C  =  2tanC / 1 - tan2C  =  2z/(1 - z2)

Substitute these in (1). 

2x/(1 -x2) + 2y/(1 -y2) + 2z/(1 - z2

=  2x/(1 -x2)  2y/(1 -y2) 2z/(1 - z2)

Hence proved.

Problem 3 :

If A + B + C =  π then prove that

sin A + sin B + sin C = 4 cos (A/2) cos (B/2) cos (C/2) 

Solution :

L.H.S

sin A + sin B + sin C

= 2 sin (A + B)/2 cos (A - B)/2 + sin C

Since  A + B + C =  π

A + B = π - C -----(1)

(A + B)/2 = (π - C)/2

π/2 - C/2

= 2 sin (π/2 - C/2) cos (A - B)/2 + sin C

= 2 cos (C/2) cos (A - B)/2 + sin C

= 2 cos (C/2) cos (A - B)/2 + 2 sin (C/2) cos (C/2)

= 2 cos (C/2) [cos (A - B)/2 + sin (C/2)]

= 2 cos (C/2) [cos (A - B)/2 + sin  (π - (A + B))/2]

= 2 cos (C/2) [cos (A - B)/2 + sin (π/2) -  (A + B)/2]

= 2 cos (C/2) [cos (A - B)/2 + cos (A + B)/2]

= 2 cos (C/2) [2cos ((A - B) + (A + B))/4 cos ((A - B) - (A + B))/4]

= 2 cos (C/2) [2cos ((A - B + A + B)/4 cos (A - B - A - B)/4]

= 2 cos (C/2) [2cos (2A/4) cos (- 2B/4)]

= 2 cos (C/2) [2cos (A/2) cos (B/2)]

= 4 cos (A/2) cos (B/2) cos (C/2)

R.H.S

Hence it is proved

In Δ ABC, prove that

(i) tan A + tan B + tan C = tan A . tan B . tan C

(ii) cot A . cot B + cot B . cot C + cot C . cot A = 1

Solution :

In a triangle, sum of interior angles = 180

A + B + C = π

A + B  = π - C

tan (A + B) = tan (π - C)

(i) tan A + tan B + tan C = tan A . tan B . tan C

(tan A + tan B) / 1 - tan A tan B = tan (π - C)

(tan A + tan B) / 1 - tan A tan B = -tan C

tan A + tan B =  -tan C(1 - tan A tan B)

tan A + tan B =  -tan C + tan A tan B tan C

tan A + tan B + tan C = tan A tan B tan C

ii)  From tan A + tan B + tan C = tan A tan B tan C

(tan A + tan B + tan C)/tan A tan B tan C = 1

(tan A / tan A tan B tan C) + (tan B / tan A tan B tan C ) + (tan C / tan A tan B tan C) = 1

(1/tan B tan C) + (1/tan A tan C ) + (1/tan A tan B) = 1

cot B cot C + cot A cot C + cot A cot B = 1

Hence it is proved

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 199)

    Jul 02, 25 07:06 AM

    digitalsatmath268.png
    Digital SAT Math Problems and Solutions (Part - 199)

    Read More

  2. Logarithm Questions and Answers Class 11

    Jul 01, 25 10:27 AM

    Logarithm Questions and Answers Class 11

    Read More

  3. Digital SAT Math Problems and Solutions (Part -198)

    Jul 01, 25 07:31 AM

    digitalsatmath267.png
    Digital SAT Math Problems and Solutions (Part -198)

    Read More