PRACTICE QUESTIONS ON INTEGRATION

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Integrate the following with respect to x

(1)  3x3+7x2-2x+1

(2)  (7x2+2x+3)/x5

(3)  (x-1) (x+2)

(4)  (x + 1)/x2

(5)  (x + (1/x))

(6)  ∫(1 - x)

(7)  (1/x5)

(8)  1/x5/2

(9)  1/∛x⁵ 

(10)  (1/x3)(1/4)

(11)  

12)

13)  

14)  ∫ [1/x (1 + log x)2] dx

Question 1 :

∫(3x+ 7x- 2x + 1) dx

Solution :

=  ∫(3x+ 7x- 2x + 1) dx

Now we are going to write separate integration.

=  ∫3x3 dx + ∫7x2dx -∫2x dx + ∫1 dx

=  3∫x3 dx + 7∫x2dx - 2∫xdx + ∫1dx

=  3(x4/4) + 7 (x3/3) - 2(x2/2) + x + C

=  3x4/4 + 7x3/3 - x2 + x + C

So, the answer is 3x4/4 + 7x3/3 - x2 + x + C.

Question 2 :

∫(7x2+2x+3)/x5 dx

Solution :

=  ∫[(7x2+2x+3)/x5] dx

Decomposing it, we get

=  ∫(7x2/x5) dx + ∫(2x/x5) dx + ∫(3/x⁵) dx

=  7∫x-3 dx + 2∫x-4 dx + 3∫x-5 dx

=  (7x-2)/(-2) + (2x-3)/(-3) + 3x-4/(-4) + C

=  -7/2 x2 - 2/3x3 - 3/4x4 + C

So, the answer is -7/2 x2 - 2/3x3 - 3/4x4 + C.

Question 3 :

∫(x-1) (x+2) dx

Solution :

=  ∫ (x-1) (x+2) dx

=  ∫(x2+x-2) dx

=  ∫ x2 dx + ∫x dx - ∫2 dx

=  (x3/3) + (x2/2) - 2x + C

So, the answer is (x3/3) + (x2/2) - 2x + C.

Question 4 :

∫(x + 1)/xdx

Solution :

=  ∫(x+1)/x2 dx

=  ∫(x/x2) dx+∫(1/x2) dx

=  ∫(1/x) dx + ∫(x⁻²) dx

=  log x - x-1

=  log x - 1/x + C

So, the answer is log x - 1/x + C.

Question 5 :

∫(x + (1/x))dx

Solution :

(x + (1/x))2  =  x2 + (1/x2) + (2  x ⋅ 1/x )

=  ∫x2 dx + ∫(1/x2) dx + 2∫dx

=  ∫x2 dx + ∫x-2 dx + 2∫dx

=  (x3/3) - 1/x + 2x + C

So, the answer is (x3/3) - 1/x + 2x + C.

Question 6 :

∫(1 - x)dx

Solution :

(1 - x)3  =  1- 3(1)2x + 3x- x3

=  1 - 3x + 3 x- x3

∫(1 - x)3 dx  =  ∫(1 - 3x + 3x- x3) dx

=  ∫1 dx - ∫3x dx + ∫3x2 dx - ∫x3 dx

=  x-3x2/2 + 3x3/3-x4/4 + C

=  x - 3x2/2 + x - x4/4 + C

So, the answer is x - 3x2/2 + x-  x4/4 + C.

Question 7 :

∫ (1/x5) dx

Solution :

1/x5  =  x-5

=  x-4/(-4) + C

=  -1/4x4 + C

So, the answer is -1/4x4 + C.

Question 8 :

1/x5/2

Solution :

∫ x(-5/2) dx  =  x(-5/2)+1]/(-5/2)+1)

=  x(-3/2)/(-3/2)+C

=  (-2/3)x(-3/2)+C

= -2/3x3/2+C

=  -2/3x√x + C

So, the answer is -2/3x√x + C.

Question 9 :

∫ 1/∛x⁵ dx

Solution :

1/∛x⁵  =  x(-5/3)

∫ x(-5/3) dx  = x(-5/3)+1)/(-5/3)+1

=  x(-2/3)/(-2/3) + C

=  -3/2x(2/3) + C

So, the answer is -3/2x(2/3) + C.

Question 10 :

(1/x3)(1/4)

Solution :

(1/x3)(1/4)  =  x(-3/4)

∫ x(-3/4) dx  =  x(-3/4)+1)/(-3/4)+1)

=  x(1/4)/(1/4) + C

=  4x(1/4) + C

So, the answer is 4x(1/4) + C.

Question 11 :

Solution :

Since the upper and lower limit both are same and we have negative sign for lower limit and positive sign for upper limit, we may use the property follows.

Check if the function f(x) is odd or even.

  • If it is odd, the answer will become 0.
  • If it is even, then 

Let f(x) = x √8 -x2

f(-x) = -x√8 -(-x)2

= -x√8 -x2

Since f(-x) = -f(x), it is even function, then the answer is 0

Question 12 :

Solution :

Using substitution method, let us solve this problem

Let t = x2 + 1

x2 = t - 1

Find the derivative on both sides,

2x dx = dt - 0

x dx = dt/2

Question 13 :

Solution :

Using substitution method, we can try to do this problem

Let t = x2 + 2

Differentiating with respect to x on both sides.

dt = 2x dx

When x = 1, t = 12 + 2 ==> 3

When x = 2, t = 22 + 2 ==> 6

Question 14 :

∫ [1/x (1 + log x)2] dx

Solution :

Let us use substitution method to solve the problem.

Let 1 + log x = t

0 + (/x) dx = dt

∫ [1/x (1 + log x)2] dx = ∫ (1/t2) dt

 ∫t-2 dt

t-2+1 / (-2 + 1) + C

t-1 / (-1) + C

= -1/t + C

Applying the value of t, we get

= -1/(1 + log x) + C

Question 15 :

∫ (6x + 4) / (x - 2)(x - 3) dx

Solution :

∫ (6x + 4) / (x - 2)(x - 3) dx

Since the linear factors are multiplying at the denominator, using the concept of partial fraction we have to decompose into two fractions.

(6x + 4) / (x - 2)(x - 3) = A/(x - 2) + B/(x - 3)  ------(1)

6x + 4 = A(x - 3) + B(x - 2)

Put x = 3

6(3) + 4 = A(3 - 3) + B(3 - 2)

18 + 4 = B

B = 22

Put x = 2

6(2) + 4 = A(2 - 3) + B(2 - 2)

12 + 4 = A(-1)

A = -16

Applying the values of A and B in (1), we get

(6x + 4) / (x - 2)(x - 3) = -16/(x - 2) + 22/(x - 3)

Integrating on both sides,

∫ (6x + 4) / (x - 2)(x - 3) dx = -16/(x - 2) dx + 22/(x - 3) dx

= -16log (x - 2) + 22 log (x - 3) + C

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. ASTC Formula in Trigonometry

    Dec 23, 25 11:34 PM

    astc1
    ASTC Formula in Trigonometry - Concepts - Examples and Solved Problems

    Read More

  2. Coin Tossing Probability

    Dec 23, 25 11:29 PM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More

  3. Permutation and Combination

    Dec 23, 25 11:28 PM

    Permutation and Combination - Definition - Formulas - Shortcuts - Difference between permutation and combination

    Read More