# PRACTICE PROBLEMS ON SPECIAL RIGHT TRIANGLE FOR SAT

Problem 1 :

In the figure given below, find the value of x. Solution :

In triangle ABD,

BD2  =  AB2+AD2

BD2  =  √72+32

BD2  =  7+9

BD2  =  16

BD  =  4

In triangle BDC,

BC2  =  BD2+DC2

x2  =  42+32

x2  =  16+9

x2  =  25

x  =  5

Problem 2 :

In the figures below, find the values of x and y. Solution :

(a)  Since it is 45-45-90 triangle is an isosceles triangle, the value of x is 2.

In 45-45-90 right triangle, hypotenuse side  =  √2 ⋅ leg

y  =  2√2

(b)  In a 30-60-90 right triangle,

longer leg  =  √3 ⋅ shorter leg

3  =  √3 x

x  =  3/√3

hypotenuse  =  2⋅ shorter leg

y  =  2x

y  =  2(3/√3)

y  =  2√3

Problem 3 : In the figure above, if AD  =  BD  =  2√3, what is the length of AB ?

Solution :

AD  =  BD  =  2√3  (Given)

<ADC  =  30+30 (Using exterior angle theorem)

<ADC  =  60

In triangle ADC,

<CAD + <CDA + <ACD  =  180

<CAD + 60+ 90  =  180

<CAD  =  180-150

<CAD  =  30

If CD  =  x (The side opposite to smaller angle)

Hypotenuse (AD)  =  2√3  (2 times the shorter leg)

CD  =  √3

The longer leg  =  (√3 times the shorter leg)

The longer leg(AC)  =  √3 √3

AC  =  3

In triangle ABC,

BC  =  CD + BD

BC  =   √3+2√3  ==>  3√3

AB2  =  AC2 + BC2

AB2  =  32 + (3√3)2

AB2  =  9 + 27

AB2  =  36

AB  =  6

So, length of AB is 6.

Problem 4 : In the figure given above AB  =  6, BC  =  8 and CD  =  5. What is the length of AD?

Solution :

In triangle ABC,

AC2  =  AB2 + BC2

AC2  =  62 + 82

AC2  =  36+64

AC  =  10

In triangle ADC,

AC2  =  AD2 + DC2

102  =  AD2 + 52

AD2  =  100-25

AD  =  √75

AD  =  5√3

Problem 5 : In the above triangle ABC,  BD  =  √3. What is the perimeter of triangle ABC.

Solution :

In triangle BDC,

<DBC  =  30

The side which is opposite to smaller angle is small, then

let x  =  DC

BC  =  (2 times the shorter leg)  ==>  2x

BC2  =  BD2+DC2

(2x)2  =  √32+x2

3x=  3

x2  =  1

BC  =  2(1)  ==>  2

DC  =  1

In triangle ABD,

BD  =  √3 (Side which is opposite to smaller angle)

AB  =  2√3

AB2  =  AD2+BD2

(2√3)2  =  AD2+(√3)2

4(3) - 3  =  AD2

AD =  9

AD  =  3

CA  =  AD + DC

=  3 + 1

CA  =  4

Perimeter of triangle ABC  =  AB+BC+CA

=  2√3+2+4

=  2√3+6

Problem 6 :

In the triangle above, <A    <C and BD bisects AC. What is the perimeter of triangle ABC ? Solution :

Since BD is the bisector of AC, AD  =  DC  =  7

BD  =  4√2

In triangle BDC,

BC2  =  BD2+DC2

BC2  =  (4√2)2+72

BC2  =  16(2)+49

BC2  =  81

BC  =  9

AB  =  9

Perimeter of triangle ABC  =  AB + BC + CA

=  9+9+14

=  32 Apart from the stuff given in this section if you need any other stuff in math, please use our google custom search here.

If you have any feedback about our math content, please mail us :

v4formath@gmail.com

We always appreciate your feedback.

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Word problems on quadratic equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6

Featured Categories

Math Word Problems

SAT Math Worksheet

P-SAT Preparation

Math Calculators

Quantitative Aptitude

Transformations

Algebraic Identities

Trig. Identities

SOHCAHTOA

Multiplication Tricks

PEMDAS Rule

Types of Angles

Aptitude Test 