PRACTICE PROBLEMS ON OPERATIONS ON SET

(1)  If A⊂B,then show that AUB  =  B (use venn diagram)   Solution

(2)  If A⊂B, then find A∩B and A\B (use venn diagram)   Solution 

(3)  Let P  =  {a, b, c}, Q  =  {g, h, x, y} and R = {a, e, f, s}. Find the following

(i)  P\R    (ii)  Q∩R        (iii)  R\(P∩Q)        Solution

(4) If A = {4, 6, 7, 8, 9}, B = {2, 4, 6} and C = {1, 2, 3,4 , 5, 6},then find

(i) AU(B∩C)    (ii) A∩(BUC)       (iii) A\(C\B)    Solution

(5)  Given A = {a, x, y, r, s}, B = {1, 3, 5, 7, -10},verify the commutative property of set union.   Solution

(6)  Verify the commutative property of set intersection for A = {l, m, n, o, 2, 3, 4, 7} and B = {2, 5, 3, -2, m, n, o, p}   Solution

(7) For A = {x|x is a prime factor of 42}, B ={x|5 < x ≤ 12, x ∈ N} and C = {1, 4, 5, 6} verify AU(BUC)  =  (AUB)UC.   Solution

(8) Given P  =  {a, b, c, d, e} Q  =  {a, e, i, o, u} and R  =  {a, c, e, g}. Verify the associative property of set intersection.    Solution

(9) For A = {5, 10, 15, 20} B = {6, 10, 12, 18, 24} and C = {7, 10, 12, 14, 21, 28} verify whether A\(B\C) = (A\B)\C. Justify your answer.  Solution

(10) Let A = {-5, -3, -2, -1} B = {-2, -1, 0} and C = {-6, -4, -2}. Find A\(B\C) and (A\B)\C. What can we conclude about set difference operation?  Solution

(11) For A = {-3, -1, 0, 4, 6, 8, 10} B = {-1, -2, 3, 4, 5, 6} and C = {-1, 2, 3, 4, 5, 7}, show that

(i) AU(B∩C)  =  (AUB)∩(AUC)

(ii) A∩(BUC)  =  (A∩B)U(A∩C)     Solution

(iii) Verify using venn diagrams

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 270 Degree Clockwise Rotation

    Jul 03, 22 08:18 PM

    270 Degree Clockwise Rotation - Rule - Problems with step by step explanation

    Read More

  2. Rotation Transformation

    Jul 03, 22 08:09 PM

    Rotation Transformation - Concept - Examples

    Read More

  3. Rotations and Rotational Symmetry

    Jul 03, 22 08:09 PM

    Rotations and Rotational Symmetry - Concept - Examples

    Read More