POLYNOMIALS IN STANDARD FORM WORKSHEET

Problems 1 to 8 : Write each polynomial in standard form. Then, give the leading coefficient.   

Problem 1 :

20y + 4y3 - 2 + y2

Problem 2 :

x3 + x5 + 4x

Problem 3 :

5x - 17x6

Problem 4 :

-6x4 - 5x - 9x3

Problem 5 :

9x3 - x + 3 - 7x4

Problem 6 :

x - 9 + 7x3 + 6x2

Problem 7 :

√2x2 - (7/2)x4 + x - 5x3

Problem 8 :

y2 - √5y3 - 11 - (7/3)y + 9y4

Problems 9 and 10 : Add the following two polynomials and write the resulting polynomials in standard form. 

Problem 9 :

p(x)  =  6x2 - 7x + 2  and  q(x)  =  6x3 - 7x + 15

Problem 10 :

f(x)  =  16x4 - 5x2 + 9  and  g(x)  =  -6x3 + 7x - 15

Problems 11 and 12 : Find the difference of the following two polynomials and write the resulting polynomials in standard form. 

Problem 11 :

h(x)  =  7x3 - 6x + 1  and  f(x)  =  7x2 + 17x - 9

Problem 12 :

h(x)  =  x - 6x3 - 5  and  f(x)  =  12x -7x3 - 5

Detailed Answer Key

Problems 1 to 8 : Write each polynomial in standard form. Then, give the leading coefficient.   

Problem 1 :

20y + 4y3 - 2 + y2

Solution : 

Find the degree of each term :

20y  :  degree 1

4y3  :  degree 3

-2  :  degree 0

y2  :  degree 2

Arrange the terms in order from largest degree to smallest degree.

4y3 + y+ 20y - 2

The standard form is (4y3 + y+ 20y - 2) and the leading coefficient is 4.

Problem 2 :

x3 + x5 + 4x

Solution : 

Find the degree of each term :

x3  :  degree 3

x5  :  degree 5

4x  :  degree 1

Arrange the terms in order from largest degree to smallest degree.

x5 + x+ 4x

The standard form is (x5 + x+ 4x) and the leading coefficient is 1.

Problem 3 :

5x - 17x6

Solution : 

Find the degree of each term :

5x  :  degree 1

-17x6  :  degree 6

Arrange the terms in order from largest degree to smallest degree.

-17x6 + 5x

The standard form is (-17x+ 5x) and the leading coefficient is -17.

Problem 4 :

-6x4 - 5x - 9x3

Solution : 

Find the degree of each term :

-6x4  :  degree 4

-5x  :  degree 1

-9x3  :  degree 3

Arrange the terms in order from largest degree to smallest degree.

-6x- 9x3 - 5x

The standard form is (-6x- 9x3 - 5x) and the leading coefficient is -6.

Problem 5 :

9x3 - x + 3 - 7x4

Solution : 

Find the degree of each term :

9x3  :  degree 3

-x  :  degree 1

3  :  degree 0

-7x4  :  degree 4

Arrange the terms in order from largest degree to smallest degree.

-7x+ 9x3 - x + 3

The standard form is (-7x+ 9x3 - x + 3) and the leading coefficient is -7.

Problem 6 :

x - 9 + 7x3 + 6x2

Solution : 

Find the degree of each term :

x  :  degree 1

-9  :  degree 0

7x3  :  degree 3

6x2  :  degree 2

Arrange the terms in order from largest degree to smallest degree.

7x3 + 6x+ x - 9

The standard form is (7x3 + 6x+ x - 9) and the leading coefficient is 7.

Problem 7 :

√2x2 - (7/2)x4 + x - 5x3

Solution : 

Find the degree of each term :

√2x2  :  degree 2

-(7/2)x4  :  degree 4

x  :  degree 1

-5x3  :  degree 3

Arrange the terms in order from largest degree to smallest degree.

-(7/2)x4 - 5x√2x+ x

The standard form is (-(7/2)x4 - 5x√2x+ x) and the leading coefficient is -7/2.

Problem 8 :

y2 - √5y3 - 11 - (7/3)y + 9y4

Solution : 

Find the degree of each term :

y2  :  degree 2

-√5y3  :  degree 3

-11  :  degree 0

-(7/3)y  :  degree 1

9y4  :  degree 4

Arrange the terms in order from largest degree to smallest degree.

9y4√5yy2 - (7/3) y - 11

The standard form is (9y4√5yy2 - (7/3) y - 11) and the leading coefficient is 9.

Problems 9 and 10 : Add the following two polynomials and write the resulting polynomials in standard form. 

Problem 9 :

p(x)  =  6x2 - 7x + 2  and  q(x)  =  6x3 - 7x + 15

Solution :

p(x) + q(x)  =  (6x2 - 7x + 2) + (6x3 - 7x + 15)

=  6x2 - 7x + 2 + 6x3 - 7x + 15

Arrange the terms in order from largest degree to smallest degree.

=  6x+ 6x2 - 7x - 7x + 2 + 15

Combine the like terms. 

=  6x+ 6x2 - 14x + 17

Problem 10 :

f(x)  =  16x4 - 5x2 + 9  and  g(x)  =  -6x3 + 7x - 15

Solution :

f(x) + g(x)  =  (16x4 - 5x2 + 9) + (-6x3 + 7x - 15)

=  16x4 - 5x2 + 9 + -6x3 + 7x - 15

Arrange the terms in order from largest degree to smallest degree.

=  16x- 6x3  - 5x+ 7x + 9 - 15

Combine the like terms. 

=  16x4- 6x3  - 5x+ 7x  - 6

Problems 11 and 12 : Find the difference of the following two polynomials and write the resulting polynomials in standard form. 

Problem 11 :

h(x)  =  7x3 - 6x + 1  and  f(x)  =  7x2 + 17x - 9

Solution :

h(x) - f(x)  =  (7x3 - 6x + 1) - (7x2 + 17x - 9)

7x3 - 6x + 1 - 7x2 - 17x + 9

Arrange the terms in order from largest degree to smallest degree.

=  7x3 - 7x2- 6x - 17x + 1 + 9

Combine the like terms. 

=  7x3 - 7x- 23x + 10

Problem 12 :

h(x)  =  x - 6x3 - 5  and  f(x)  =  12x -7x3 - 5

Solution :

h(x) - f(x)  =  (x - 6x3 - 5) - (12x - 7x3 - 5)

x - 6x3 - 5 - 12x + 7x3 + 5

Arrange the terms in order from largest degree to smallest degree.

=  -6x3 + 7x+ x - 12x -5 + 5

Combine the like terms. 

=  x- 11x

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 158)

    May 06, 25 11:00 AM

    digitalsatmath198.png
    Digital SAT Math Problems and Solutions (Part - 158)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 157)

    May 05, 25 10:57 AM

    digitalsatmath195.png
    Digital SAT Math Problems and Solutions (Part - 157)

    Read More

  3. AP Calculus AB Problems with Solutions (Part - 21)

    May 04, 25 11:49 PM

    apcalculusab20.png
    AP Calculus AB Problems with Solutions (Part - 21)

    Read More