# PERMUTATION AND COMBINATION PROBLEMS

Problem 1 :

A committee of 7 members is to be chosen from 6 artists, 4 singers and 5 writers. In how many ways can this be done if in the committee there must be at least one member from each group and at least 3 artists ?

Solution :

For the given condition, possible ways to select members for a committee of 7 members.

(3A, 3S, 1W) ----> 6C3 ⋅ 4C3 ⋅ 5C1  =  20 ⋅ ⋅ 5  =  400

(3A, 1S, 3W) ----> 6C3 ⋅ 4C1 ⋅ 3C1  =  20 ⋅ ⋅ 10  =  800

(3A, 2S, 2W) ----> 6C3 ⋅ 4C2 ⋅ 5C2  =  20 ⋅ ⋅ 10  =  1200

(4A, 2S, 1W) ----> 6C4 ⋅ 4C2 ⋅ 5C1  =  15 ⋅ ⋅ 5  =  450

(4A, 1S, 2W) ----> 6C4 ⋅ 4C1 ⋅ 5C2  =  15 ⋅ ⋅ 10  =  600

(5A, 1S, 1W) ----> 6C5 ⋅ 4C1 ⋅ 5C1  =  6 ⋅ ⋅ 5  =  120

Thus, the total No.of ways is

=  400 + 800 + 1200 + 450 + 600 + 120

=  3570

Hence, the no. of ways,a committee of 7 members can be chosen is 3570.

Problem 2 :

The supreme court has given a 6 to 3 decisions upholding a lower court. Find the number of ways it can give a majority decision reversing the lower court.

Solution :

Upholding a lower court means, supporting it for its decision.

Reversing a lower court means, opposing it for its decision.

In total of 9 cases (6 + 3 = 9), it may give 5 or 6 or 7 or 8 or 9 decisions reversing the lower court. And it can not be 4 or less than 4. Because majority of 9 is 5 or more.

The possible combinations in which it can give a majority decision reversing the lower court are

5 out of 9 ----> 9C5  =  126

6 out of 9 ----> 9C6  =  84

7 out of 9 ----> 9C7  =  36

8 out of 9 ----> 9C8  =  9

9 out of 9 ----> 9C9  =  1

Thus, the total no. of ways is

=  126 + 84 + 36 + 9 + 1

=  256

Hence the no. of ways it can a majority of the decision reversing the lower court is 256.

Problem 3 :

Five bulbs of which three are defective are to be tried in two bulb points in a dark room. Find the number of trials in which the room can be lighted.

Solution :

Given : 3 bulbs are defective out of 5.There are two bulb points in the dark room

One bulb (or two bulbs) in good condition is enough to light the room.

Since there are two bulb points, we have to select 2 out of 5 bulbs.

No. of ways of selecting 2 bulbs out of 5 is

=  5P2

=  10

(It includes selecting two good bulbs, two defective bulbs, one good bulb and one defective bulb. So, in these 10 ways, room may be lighted or may not be lighted)

No. of ways of selecting 2 defective bulbs out of 3 is

=  3C2

=  3

(It includes selecting only two defective bulbs. So, in these 3 ways, room can not be lighted)

The number of ways in which the room can be lighted is

=  10 - 3

=  7

Hence the no. of trials in which the dark room can be lighted is 7.

Problem 4 :

Find the number of ways of selecting 4 letters from the word EXAMINATION.

Solution :

There are 11 letters in the word of which A,I,N are repeated twice.

Thus, we have 11 letters of 8 different kinds as given below.

(A, A), (I, I), (N, N), E, X, M, T, O

The group of 4 letters can be selected in any one of the following 4 forms.

(i) 2 alike and other 2 alike.

(ii) 2 alike and other 2 different.

(iii) All 4 different.

Case (i) :

If 2 are alike and other 2 are also alike, any 2 of the 3 groups

(A, A),(I, I),(N, N)

will be selected.

The number of ways is

=  3C2

=  3

Case (ii) :

If 2 are alike and other 2 are different, any one of the three groups

(A, A), (I, I), (N, N)

and 2 letters from 7 different letters are selected.

[E, X, M, T, O + 2 different letters from (A, A), (I, I),(N, N), because one of the groups is already selected]

The number of ways is

=  3C1 ⋅ 7C2

=  3 ⋅ 21

=  63

Case (iii) :

If all four are different, 4 from 8 different letters

A, I, N, E, X, M, T, O

are selected.

The number of ways  is

=  8C4

=  70

Thus the total number of ways is

=  3 + 63 + 70

=  136

Hence, the number of ways of selecting 4 letters from the word EXAMINATION is 136.

Problem 5 :

The letters of the word ZENITH are written in all possible orders. If all the words are written in a dictionary, what is the rank or order of the word ZENITH ?

Solution :

No. of new words formed with the letters of the word

ZENITH  =  6!  =  720

Alphabetical order of the letters of the word ZENITH is

E,H,I,N,T,Z

Dictionary gives meanings in the order starting with E,H and so on.

Number of words can be formed starting with E,H and so on.

E  __  __  __  __  __  =  5!  =  120 words

H  __  __  __  __  __  =  5!  =  120 words

I  __  __  __  __  __  =  5!  =  120 words

N  __  __  __  __  __  =  5!  =  120 words

T  __  __  __  __  __  =  5!  =  120 words

Z  E  H  __  __  __  =  3!  =  6 words

Z E I  __  __  __  =  3!  =  6 words

Z E N H  __  __  =  2!  =  2 words

Z E N I H  __  =  1!  =  1 word

Z E N I T H  =  1!  =  1 word

Thus, the total Number of words is

=  120 + 120 + 120 + 120 + 120 + 6 + 6 + 2 + 1 + 1

=  616

Hence, the rank or order of the word ZENITH is 616.

Apart from the problems given on above, if you need more problems on permutation and combination given above,

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

If you have any feedback about our math content, please mail us :

v4formath@gmail.com

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6