PERMUTATION AND COMBINATION
PROBLEMS

Problem 1 :

A committee of 7 members is to be chosen from 6 artists, 4 singers and 5 writers. In how many ways can this be done if in the committee there must be at least one member from each group and at least 3 artists ?

Solution :

For the given condition, possible ways to select members for a committee of 7 members.

(3A, 3S, 1W) ----> 6C3 ⋅ 4C3 ⋅ 5C1  =  20 ⋅ ⋅ 5 = 400

(3A, 1S, 3W) ----> 6C3 ⋅ 4C1 ⋅ 3C1  =  20 ⋅ ⋅ 10 = 800

(3A, 2S, 2W) ----> 6C3 ⋅ 4C2 ⋅ 5C2 = 20 ⋅ ⋅ 10 = 1200

(4A, 2S, 1W) ----> 6C4 ⋅ 4C2 ⋅ 5C1 = 15 ⋅ ⋅ 5 = 450

(4A, 1S, 2W) ----> 6C4 ⋅ 4C1 ⋅ 5C2 = 15 ⋅ ⋅ 10 = 600

(5A, 1S, 1W) ----> 6C5 ⋅ 4C1 ⋅ 5C1 = 6 ⋅ ⋅ 5 = 120

Thus, the total no. of ways is

= 400 + 800 + 1200 + 450 + 600 + 120

= 3570

Problem 2 :

The supreme court has given a 6 to 3 decisions upholding a lower court. Find the number of ways it can give a majority decision reversing the lower court.

Solution :

Upholding a lower court means, supporting it for its decision.

Reversing a lower court means, opposing it for its decision.

In total of 9 cases (6 + 3 = 9), it may give 5 or 6 or 7 or 8 or 9 decisions reversing the lower court. And it can not be 4 or less than 4. Because majority of 9 is 5 or more.

The possible combinations in which it can give a majority decision reversing the lower court are

5 out of 9 ----> 9C5 = 126

6 out of 9 ----> 9C6 = 84

7 out of 9 ----> 9C7 = 36

8 out of 9 ----> 9C8 = 9

9 out of 9 ----> 9C9 = 1

Thus, the total number of ways is

= 126 + 84 + 36 + 9 + 1

= 256

Problem 3 :

Five bulbs of which three are defective are to be tried in two bulb points in a dark room. Find the number of trials in which the room can be lighted.

Solution :

Given : 3 bulbs are defective out of 5.There are two bulb points in the dark room.

One bulb (or two bulbs) in good condition is enough to light the room.

Since there are two bulb points, we have to select 2 out of 5 bulbs.

No. of ways of selecting 2 bulbs out of 5 is

= 5P2

= 10

(It includes selecting two good bulbs, two defective bulbs, one good bulb and one defective bulb. So, in these 10 ways, room may be lighted or may not be lighted)

Number of ways of selecting 2 defective bulbs out of 3 is

= 3C2

= 3

(It includes selecting only two defective bulbs. So, in these 3 ways, room can not be lighted)

The number of ways in which the room can be lighted is

= 10 - 3

= 7

Problem 4 :

Find the number of ways of selecting 4 letters from the word EXAMINATION.

Solution :

There are 11 letters in the word of which A,I,N are repeated twice.

Thus, we have 11 letters of 8 different kinds as given below.

(A, A), (I, I), (N, N), E, X, M, T, O

The group of 4 letters can be selected in any one of the following 4 forms.

(i) 2 alike and other 2 alike.

(ii) 2 alike and other 2 different.

(iii) All 4 different.

Case (i) :

If 2 are alike and other 2 are also alike, any 2 of the 3 groups

(A, A),(I, I),(N, N)

will be selected.

The number of ways is

= 3C2

= 3

Case (ii) :

If 2 are alike and other 2 are different, any one of the three groups

(A, A), (I, I), (N, N)

and 2 letters from 7 different letters are selected.

[E, X, M, T, O + 2 different letters from (A, A), (I, I),(N, N), because one of the groups is already selected]

The number of ways is

= 3C1 ⋅ 7C2

= 3 ⋅ 21

= 63

Case (iii) :

If all four are different, 4 from 8 different letters

A, I, N, E, X, M, T, O

are selected.

The number of ways  is

= 8C4

= 70

Thus the total number of ways is

= 3 + 63 + 70

= 136

Problem 5 :

The letters of the word ZENITH are written in all possible orders. If all the words are written in a dictionary, what is the rank or order of the word ZENITH ?

Solution :

Number of new words formed with the letters of the word.

ZENITH  =  6!  =  720

Alphabetical order of the letters of the word ZENITH is

E, H, I, N, T, Z

Dictionary gives meanings in the order starting with E,H and so on.

Number of words can be formed starting with E,H and so on.

E  __  __  __  __  __  =  5! = 120 words

H  __  __  __  __  __  =  5! = 120 words

I  __  __  __  __  __  =  5! = 120 words

N  __  __  __  __  __  =  5! = 120 words

T  __  __  __  __  __  =  5! = 120 words

Z  E  H  __  __  __  =  3! = 6 words

Z E I  __  __  __  =  3! = 6 words

Z E N H  __  __  =  2! = 2 words

Z E N I H  __  =  1! = 1 word

Z E N I T H  =  1! = 1 word

Thus, the total number of words is

=  120 + 120 + 120 + 120 + 120 + 6 + 6 + 2 + 1 + 1

=  616

Hence, the rank or order of the word ZENITH is 616.

Problem 6 :

A committee of parents is made up of 20 delegates of which 10 represent the primary school, 6 the intermediate school and 4 the secondary school. A committee of 6 people is to be formed.

a. How many different committees are there?

b. How many different committees are there if only the primary school is represented?

Solution :

Part (a) :

Total number of delegates given = 20.

We have to select 6 people of these 20 delegates to form a committee.

20C6 = 38760

Hence, 38760 different committees are three.

Part (b) :

Number of delegates from primary school = 10.

We have to select 6 people of these 10 delegates to form a committee.

10C6 = 10C4

= 210

Hence, 210 different committees are three if only the primary school is represented.

Problem 7 :

A hospital decides to send a delegation of 8 doctors to a conference. These 8 doctors are chosen chosen from a group of 17 among which there are 6 surgeons. How many ways are there if at least 4 surgeons must be in the delegation?

Solution :

We need to select 8 doctors out of a group 17 doctors. In the selected 8 doctors, there must at least 4 surgeons.

So, we have to select minimum 4 surgeons.

The possible options are :

There are six possible options to select 8 doctors.

6C4 x 11C4 = 15 x 330 = 4950

6C5 x 11C3 = 6 x 165 = 990

6C6 x 11C2 = 1 x 55 = 55

We can not apply all the above options simultaneously. We can apply only one of them at a time, the first option or second option or third option.

According to the fundamental principles of counting, we have to use 'addition rule'.

OR ----> Addition

Therefore, the number of ways to select 8 doctors in which there are at least 4 surgeons :

= 1st option or 2nd option or 3rd option

= 1st option + 2nd option + 3rd option

= 4950 + 990 + 55

= 5995

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

ALGEBRA

Variables and constants

Writing and evaluating expressions

Solving linear equations using elimination method

Solving linear equations using substitution method

Solving linear equations using cross multiplication method

Solving one step equations

Solving quadratic equations by factoring

Solving quadratic equations by quadratic formula

Solving quadratic equations by completing square

Nature of the roots of a quadratic equations

Sum and product of the roots of a quadratic equations 

Algebraic identities

Solving absolute value equations 

Solving Absolute value inequalities

Graphing absolute value equations  

Combining like terms

Square root of polynomials 

HCF and LCM 

Remainder theorem

Synthetic division

Logarithmic problems

Simplifying radical expression

Comparing surds

Simplifying logarithmic expressions

Negative exponents rules

Scientific notations

Exponents and power

COMPETITIVE EXAMS

Quantitative aptitude

Multiplication tricks

APTITUDE TESTS ONLINE

Aptitude test online

ACT MATH ONLINE TEST

Test - I

Test - II

TRANSFORMATIONS OF FUNCTIONS

Horizontal translation

Vertical translation

Reflection through x -axis

Reflection through y -axis

Horizontal expansion and compression

Vertical  expansion and compression

Rotation transformation

Geometry transformation

Translation transformation

Dilation transformation matrix

Transformations using matrices

ORDER OF OPERATIONS

BODMAS Rule

PEMDAS Rule

WORKSHEETS

Converting customary units worksheet

Converting metric units worksheet

Decimal representation worksheets

Double facts worksheets

Missing addend worksheets

Mensuration worksheets

Geometry worksheets

Comparing  rates worksheet

Customary units worksheet

Metric units worksheet

Complementary and supplementary worksheet

Complementary and supplementary word problems worksheet

Area and perimeter worksheets

Sum of the angles in a triangle is 180 degree worksheet

Types of angles worksheet

Properties of parallelogram worksheet

Proving triangle congruence worksheet

Special line segments in triangles worksheet

Proving trigonometric identities worksheet

Properties of triangle worksheet

Estimating percent worksheets

Quadratic equations word problems worksheet

Integers and absolute value worksheets

Decimal place value worksheets

Distributive property of multiplication worksheet - I

Distributive property of multiplication worksheet - II

Writing and evaluating expressions worksheet

Nature of the roots of a quadratic equation worksheets

Determine if the relationship is proportional worksheet

SAT - MATH

SAT - Math Practice

SAT - Math Worksheets

Hardest SAT Math Questions with Answers

Hardest PSAT Math Questions with Answers

TRIGONOMETRY

SOHCAHTOA

Trigonometric ratio table

Problems on trigonometric ratios

Trigonometric ratios of some specific angles

ASTC formula

All silver tea cups

All students take calculus 

All sin tan cos rule

Trigonometric ratios of some negative angles

Trigonometric ratios of 90 degree minus theta

Trigonometric ratios of 90 degree plus theta

Trigonometric ratios of 180 degree plus theta

Trigonometric ratios of 180 degree minus theta

Trigonometric ratios of 180 degree plus theta

Trigonometric ratios of 270 degree minus theta

Trigonometric ratios of 270 degree plus theta

Trigonometric ratios of angles greater than or equal to 360 degree

Trigonometric ratios of complementary angles

Trigonometric ratios of supplementary angles 

Trigonometric identities 

Problems on trigonometric identities 

Trigonometry heights and distances

Domain and range of trigonometric functions 

Domain and range of inverse  trigonometric functions

Solving word problems in trigonometry

Pythagorean theorem

MENSURATION

Mensuration formulas

Area and perimeter

Volume

GEOMETRY

Types of angles 

Types of triangles

Properties of triangle

Sum of the angle in a triangle is 180 degree

Properties of parallelogram

Construction of triangles - I 

Construction of triangles - II

Construction of triangles - III

Construction of angles - I 

Construction of angles - II

Construction angle bisector

Construction of perpendicular

Construction of perpendicular bisector

Geometry questions 

Angle bisector theorem

Basic proportionality theorem

COORDINATE GEOMETRY

Coordinate geometry formulas

Distance between two points

Different forms equations of straight lines

Point of intersection

Slope of the line 

Perpendicular distance

Midpoint

Area of triangle

Area of quadrilateral

CALCULATORS

Matrix Calculators

Coordinate geometry calculators

Statistics calculators

Mensuration calculators

Algebra calculators

Chemistry periodic calculator

MATH FOR KIDS

Missing addend 

Double facts 

Doubles word problems

LIFE MATHEMATICS

Direct proportion and inverse proportion

Constant of proportionality 

Unitary method direct variation

Unitary method inverse variation

Unitary method time and work

SYMMETRY

Order of rotational symmetry

Order of rotational symmetry of a circle

Order of rotational symmetry of a square

Lines of symmetry

CONVERSIONS

Converting metric units

Converting customary units

WORD PROBLEMS

HCF and LCM  word problems

Word problems on simple equations 

Word problems on linear equations 

Word problems on quadratic equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation 

Word problems on unit price

Word problems on unit rate 

Word problems on comparing rates

Converting customary units word problems 

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles 

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems 

Profit and loss word problems 

Markup and markdown word problems 

Decimal word problems

Word problems on fractions

Word problems on mixed fractions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and Venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed 

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS 

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Circles Worksheet

    May 19, 22 12:17 PM

    Circles Worksheet

    Read More

  2. SAT Math Practice Worksheets

    May 19, 22 12:14 PM

    SAT Math Practice Worksheets - Topic wise worksheet with step by step explanation for each question

    Read More

  3. SAT Math Practice

    May 19, 22 12:10 PM

    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More