## PERIMETER OF RHOMBUS

A rhombus is a four-sided closed figure where the lengths of all the four sides will be equal and also the diagonals will be perpendicular. Let 's' be the length of each side of a rhombus.

Perimeter of the Rhombus = 4s

Example 1 :

Find the perimeter of the rhombus whose side length is 16 cm.

Solution :

Formula for perimeter of a rhombus :

=  4s

Substitute 16 for s.

=  4(16)

=  64

So, the perimeter of the rhombus is 64 cm.

Example 2 :

If the perimeter of a rhombus is 72 inches, then find the length of each side.

Solution :

Perimeter of the rhombus  =  72 inches

4s  =  72

Divide each side by 4.

s  =  16

So, the length of each side of the rhombus is 16 inches.

Example 3 :

A rhombus has side length of 500 cm. Find its perimeter in meter.

Solution :

Formula for perimeter of a rhombus :

=  4s

Substitute 500 for s.

=  4(500)

=  2000 cm -----(1)

We know

100 cm  =  1 m

Therefore, to convert centimeter to meter,  we have to divide by 100.

(1)-----> Perimeter  =  2000 cm

Divide the right side by 100 to convert cm into m.

Perimeter  =  (2000 / 100) m

=  20 m

So, perimeter of the rhombus is 20 meters.

Example 4 :

If the length of each side of a rhombus is (3x + 4) and its perimeter is 76 units, find the value of x.

Solution :

Perimeter of the rhombus  =  76 units

4s  =  76

Divide each side by 4.

s  =  19

Substitute (3x + 4) for s.

3x + 4  =  19

Subtract 4 from each side.

3x  =  15

Divide each side by 3.

x  =  5

Example 5 :

In the diagram shown below, if PQRS is a rhombus, then find its perimeter.

Solution : All four sides of a rhombus are congruent.

So,

RS  =  PS

5y - 6  =  2y + 3

Subtract 2y from each side.

3y - 6  =  3

3y  =  9

Divide each side by 3.

y  =  3

To find the length of each side of the rhombus, substitute 3 for y either in '2y + 3' or '5y - 6'.

2y + 6  =  2(3) + 3

2y + 6  =  6 + 3

2y + 6  =  9

So, the length of each side of the rhombus is 9 units.

Formula for perimeter of a rhombus :

=  4s

Substitute 9 for s.

=  4(9)

=  36

So, perimeter of the rhombus is 36 units.

Example 6 :

Find the perimeter of the rhombus shown below. Solution :

Find the length of the side MN in the above rhombus using distance formula.

MN  =  √[(x2 - x1)2(y2 - y1)2]

Substitute (x1, y1)  =  (2, 1) and (x2, y2)  =  (6, 3).

LM  =  √[(x2 - x1)2 + (y2 - y1)2]

LM  =  √[(6 - 2)2 + (3 - 1)2]

LM  =  √(42 + 22)

LM  =  √(16 + 4)

LM  =  √20

LM  =  2√5

All four sides of a rhombus are congruent.

Then, the length of each side of the above rhombus is 2√5 units.

Formula for perimeter of a rhombus :

=  4s

Substitute 2√5 for s.

=  4(2√5)

=  8√5

So, perimeter of the rhombus is 8√5 units.

Example 7 :

In the rhombus ABCD shown below, if the lengths of the diagonals AC and BD are 10 units and 8 units respectively, find its perimeter. Solution :

The diagonals of a rhombus will be perpendicular and they will bisect each other.

Then, we have In the above rhombus, consider the right angled triangle CDE.

By Pythagorean Theorem,

CD2  =  DE2 + CE2

CD2  =  42 + 52

CD2  =  16 + 25

CD2  =  41

CD  =  41

All four sides of a rhombus are congruent.

Then, the length of each side of the above rhombus is √41 units.

Formula for perimeter of a rhombus :

=  4s

Substitute √41 for s.

=  4√41

So, perimeter of the rhombus is √41 units.

Kindly mail your feedback to v4formath@gmail.com

## Recent Articles 1. ### Rotation of 90 Degrees about the Origin

Jul 03, 22 08:29 PM

Rotation of 90 Degrees about the Origin - Rule - Problems with step by step explanation

2. ### 270 Degree Clockwise Rotation

Jul 03, 22 08:18 PM

270 Degree Clockwise Rotation - Rule - Problems with step by step explanation