PERIMETER OF RHOMBUS WORKSHEET

1. Find the perimeter of the rhombus whose side length is 16 cm.

2. If the perimeter of a rhombus is 72 inches, then find the length of each side.

3. A rhombus has side length of 500 cm. Find its perimeter in meter.

4. If the length of each side of a rhombus is (3x + 4) and its perimeter is 76 units, find the value of x.

5. In the diagram shown below, if PQRS is a rhombus, then find its perimeter.

6. Find the perimeter of the rhombus shown below.

7. In the rhombus ABCD shown below, if the lengths of the diagonals AC and BD are 10 units and 8 units respectively, find its perimeter.

1. Answer :

Formula for perimeter of a rhombus :

=  4s 

Substitute 16 for s.

=  4(16)

=  64

So, the perimeter of the rhombus is 64 cm.

2. Answer :

Perimeter of the rhombus  =  72 inches

4s  =  72

Divide each side by 4.

 s  =  16 

So, the length of each side of the rhombus is 16 inches. 

3. Answer :

Formula for perimeter of a rhombus :

=  4s 

Substitute 500 for s.

=  4(500)

=  2000 cm -----(1)

We know  

100 cm  =  1 m

Therefore, to convert centimeter to meter,  we have to divide by 100. 

(1)-----> Perimeter  =  2000 cm

Divide the right side by 100 to convert cm into m.

Perimeter  =  (2000 / 100) m

=  20 m

So, perimeter of the rhombus is 20 meters.

4. Answer :

Perimeter of the rhombus  =  76 units

4s  =  76

Divide each side by 4.

s  =  19

Substitute (3x + 4) for s. 

3x + 4  =  19

Subtract 4 from each side. 

3x  =  15

Divide each side by 3. 

x  =  5

5. Answer :

All four sides of a rhombus are congruent. 

So, 

RS  =  PS

5y - 6  =  2y + 3

Subtract 2y from each side.

3y - 6  =  3

Add 6 to each side. 

3y  =  9

Divide each side by 3. 

y  =  3

To find the length of each side of the rhombus, substitute 3 for y either in '2y + 3' or '5y - 6'.

2y + 6  =  2(3) + 3

2y + 6  =  6 + 3

2y + 6  =  9

So, the length of each side of the rhombus is 9 units. 

Formula for perimeter of a rhombus :

=  4s 

Substitute 9 for s.

=  4(9)

=  36

So, perimeter of the rhombus is 36 units. 

6. Answer :

Find the length of the side MN in the above rhombus using distance formula. 

MN  =  √[(x2 - x1)2(y2 - y1)2]

Substitute (x1, y1)  =  (2, 1) and (x2, y2)  =  (6, 3).  

LM  =  √[(x2 - x1)2 + (y2 - y1)2]

LM  =  √[(6 - 2)2 + (3 - 1)2]

LM  =  √(42 + 22)

LM  =  √(16 + 4)

LM  =  √20

LM  =  2√5

All four sides of a rhombus are congruent. 

Then, the length of each side of the above rhombus is 2√5 units. 

Formula for perimeter of a rhombus :

=  4s 

Substitute 2√5 for s.

=  4(2√5)

=  8√5

So, perimeter of the rhombus is 8√5 units. 

7. Answer :

The diagonals of a rhombus will be perpendicular and they will bisect each other. 

Then, we have

In the above rhombus, consider the right angled triangle CDE. 

By Pythagorean Theorem, 

CD2  =  DE2 + CE2

CD2  =  42 + 52

CD2  =  16 + 25

CD2  =  41

CD  =  41

All four sides of a rhombus are congruent. 

Then, the length of each side of the above rhombus is √41 units. 

Formula for perimeter of a rhombus :

=  4s 

Substitute √41 for s.

=  4√41

So, perimeter of the rhombus is √41 units. 

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Precalculus Problems and Solutions (Part - 13)

    May 20, 25 06:56 AM

    Precalculus Problems and Solutions (Part - 13)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 165)

    May 19, 25 01:06 PM

    digitalsatmath208.png
    Digital SAT Math Problems and Solutions (Part - 165)

    Read More

  3. AP Calculus AB Problems with Solutions (Part - 22)

    May 18, 25 07:46 AM

    apcalculusab21.png
    AP Calculus AB Problems with Solutions (Part - 22)

    Read More