# PARTIAL FRACTIONS DECOMPOSITION EXAMPLES

Example 1 :

Resolve the following rational expressions into partial fractions.

1/(x2-a2)

Solution :

Let us decompose the denominator into linear factors.

1/(x2-a2)  =  [A(x + a) + B(x - a)]/(x2-a2)

=  A(x + a) + B(x - a)

 When x = -a1  =  B(-a –a)1  =  B(-2a)B = -1/2a When x = a1  =  A(a +a)1  =  A(2a)A = 1/2a

Hence the solution is

Example 2 :

Resolve the following rational expressions into partial fractions.

(3x + 1)/(x - 2) (x  + 1)

Solution :

3x + 1  =  A(x + 1) + B(x - 2)

 When x = -13(-1) + 1  =  B(-1 - 2)-3 + 1  =  B(-3)-2 =  -3BB  =  2/3 When x = 23(2) + 1  =  A(2 + 1)6 + 1  =  A(3)7 =  3AA  =  7/3

Hence the solution is

Example 3 :

Resolve the following rational expressions into partial fractions.

x/(x2 + 1)(x - 1)(x + 2)

Solution :

x  = A(x+2)(x2+1) + B(x2+1)(x-1) + (Cx + D)(x-1)(x+2)

 When x = 11   =  A(3)(2)1  =  6AA  =  1/6 When x = -2-2   =  B(5)(-3)-2  =  -15BB  =  2/15

When x = 0

x  = A(x+2)(x2+1) + B(x2+1)(x-1) + (Cx + D)(x-1)(x+2)

0  =  A(2)(1) + B(1)(-1) + D(-1)(2)

0  =  2A - B - 2D

By applying the values of A and B, we get

0  =  (1/3) - (2/15) - 2D

2D  =  3/15

D  =  1/10

When x = -1

-1  = A(1)(2) + B(2)(-2) + (-C+D)(-2)(1)

-1  = 2A - 4B + 2C - 2D

By applying the values of A, B and D

-1  = (1/3) - (8/15) + 2C - (1/5)

-1  =  ((5 - 8 - 3)/15) + 2C

-1  =  -6/15 + 2C

-1 + (2/5)  =  2 C  ==> -3/5  =  2C  ==> C  =  -3/10

Hence the solution is

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

## Recent Articles

1. ### SAT Math Videos

May 22, 24 06:32 AM

SAT Math Videos (Part 1 - No Calculator)

2. ### Simplifying Algebraic Expressions with Fractional Coefficients

May 17, 24 08:12 AM

Simplifying Algebraic Expressions with Fractional Coefficients