PARTIAL FRACTIONS DECOMPOSITION EXAMPLES

Example 1 :

Resolve the following rational expressions into partial fractions.

1/(x2-a2)

Solution :

Let us decompose the denominator into linear factors. 1/(x2-a2)  =  [A(x + a) + B(x - a)]/(x2-a2)

=  A(x + a) + B(x - a)

 When x = -a1  =  B(-a –a)1  =  B(-2a)B = -1/2a When x = a1  =  A(a +a)1  =  A(2a)A = 1/2a

Hence the solution is Example 2 :

Resolve the following rational expressions into partial fractions.

(3x + 1)/(x - 2) (x  + 1)

Solution : 3x + 1  =  A(x + 1) + B(x - 2)

 When x = -13(-1) + 1  =  B(-1 - 2)-3 + 1  =  B(-3)-2 =  -3BB  =  2/3 When x = 23(2) + 1  =  A(2 + 1)6 + 1  =  A(3)7 =  3AA  =  7/3

Hence the solution is Example 3 :

Resolve the following rational expressions into partial fractions.

x/(x2 + 1)(x - 1)(x + 2)

Solution : x  = A(x+2)(x2+1) + B(x2+1)(x-1) + (Cx + D)(x-1)(x+2)

 When x = 11   =  A(3)(2)1  =  6AA  =  1/6 When x = -2-2   =  B(5)(-3)-2  =  -15BB  =  2/15

When x = 0

x  = A(x+2)(x2+1) + B(x2+1)(x-1) + (Cx + D)(x-1)(x+2)

0  =  A(2)(1) + B(1)(-1) + D(-1)(2)

0  =  2A - B - 2D

By applying the values of A and B, we get

0  =  (1/3) - (2/15) - 2D

2D  =  3/15

D  =  1/10

When x = -1

-1  = A(1)(2) + B(2)(-2) + (-C+D)(-2)(1)

-1  = 2A - 4B + 2C - 2D

By applying the values of A, B and D

-1  = (1/3) - (8/15) + 2C - (1/5)

-1  =  ((5 - 8 - 3)/15) + 2C

-1  =  -6/15 + 2C

-1 + (2/5)  =  2 C  ==> -3/5  =  2C  ==> C  =  -3/10

Hence the solution is  Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

Recent Articles 1. Trigonometry Word Problems Worksheet with Answers

Jan 17, 22 10:45 AM

Trigonometry Word Problems Worksheet with Answers

2. Trigonometry Word Problems with Solutions

Jan 17, 22 10:41 AM

Trigonometry Word Problems with Solutions