OPERATIONS WITH FUNCTIONS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

The sum, difference product and quotient are defined for real functions only on their common domain. These operations do not make any sense for general functions even if their domains are same because the sum, difference, product and quotient may or may not meaningful for the elements in their common domain.

Finding Sum of Two Functions :

(f + g) (x)  =  f(x) + g(x) for all x ∈ D1 n D2

Finding difference of Two Functions :

(f - g) (x)  =  f(x) - g(x) for all x ∈ D1 n D2

Finding Product of Two Functions :

(f g) (x)  =  f(x)  g(x) for all x ∈ D1 n D2

Dividing two functions :

(f/g) (x)  =  f(x) / g(x) for all x ∈ D1 n D2

Multiplication of a function by scalar :

Let f : D -> R be a real function and α be a scalar. Then the product α is a function from D to R and is defined as 

(αf)x  =  α f(x) for all x ∈ D

Reciprocal of a function :

If f : D-> R is a real function, then its reciprocal function 1/f is a function from D - {x:f(x)  =  0} to R and is defined as (1/f) x  =  1/f(x)

Question 1 :

Let f and g be two real functions defined by f(x)  =  1/(x+4) and g(x)  =  (x + 4)3

Find the following (i) f + g  (ii)  f - g  (iii)  fg  (iv)  f/g  (v)  2f  (vi)  1/f 


Solution :

f(x)  =  1/(x + 4)

Domain of f(x)  =  R - {-4}

g(x)  =  (x + 4)3

Domain of g(x)  =  R (all real values)

There exists common domain for both the functions and it is   R - {-4}. 

(i)  f + g : R - {-4} -> R and is defined by 

(f + g) (x)  =  f(x) + g(x)

  =  [1/(x+4)] + [(x + 4)3]

  =  (1 + (x + 4)4)/(x + 4)

(ii)  f - g : R - {-4} -> R and is defined by 

(f - g) (x)  =  f(x) - g(x)

  =  [1/(x+4)] - [(x + 4)3]

  =  (1 - (x + 4)4)/(x + 4)

(iii)  f g : R - {-4} -> R and is defined by 

(f g) (x)  =  f(x)  g(x)

  =  [1/(x+4)]  [(x + 4)3]

=  (x + 4)2

(iv)  (f/g)(x)  =  R - {-4} -> R and is defined by 

g(x)  =  0

(x + 4)3  =  0

x + 4  =  0 and x  =  -4

Domain (f/g) = Domain (f) n Domain (g) - {x:g(x)=0}=R-{-4}

(f/g) (x)  =  f(x) / g(x)

  =  [1/(x+4)] / [(x + 4)3]

=  1/(x + 4)4

(v)  2 f 

(2f) (x)  =  2 f(x)  

  =  2 (1/(x + 4))

  =  2/(x + 4)

(vi)  1/f 

( 1/f) x  =  1/f(x)

f(x)  =  1/(x+4) 

 x + 4  =  0

x  =  -4  ≠ 0

1/f :  R - {-4} -> R and is defined by 

(1/f)(x)  =  1/[1/(x+4)]

  =  x +  4

(vii)  1/g

(1/g) x  =  1/g(x)

g(x)  =  (x + 4) =  0

x  =  -4  ≠ 0

1/g :  R - {-4} -> R and is defined by 

(1/g)(x)  =  1/(x+4)3

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  2. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More

  3. Factorial Problems and Solutions

    Dec 02, 25 09:27 AM

    Factorial Problems and Solutions

    Read More