**What is "non recurring decimals" ? **

**The decimal numbers which continue infinitely without repeated pattern. **

All the above decimal numbers are irrational and they can not be converted into fractions.

How do we have this non repeating decimal in math ?

When we are trying to find square of a number which is not a perfect square, we get this non repeating non terminating decimal.

**And these decimals can never be converted in to fractions and they are called as irrational numbers. **

A non terminating decimal can be converted into fraction, only if it has repeated pattern.

More clearly,

**Non terminating recurring decimals can be converted into fractions. **

**Non terminating non recurring decimals can never be converted into fractions.**

**Step 1 : **

**Let x = Given decimal number **

**For example, **

**If the given decimal number is 2.0343434......... **

**then, let x = 2.0343434...........**

**Step 2 : **

**Identify the repeated pattern**

**For example,**

**In 2.0343434..........., the repeated pattern is 34**

**(Because 34 is being repeated)**

**Step 3 :**

**Identify the first repeated pattern and second repeated pattern as as explained in the example given below. **

**Step 4 :**

**Count the number of digits between the decimal point and first repeated pattern as given in the picture below. **

**Step 5 :**

**Since there is 1 digit between the decimal point and the first repeated pattern, we have to multiply the given decimal by 10 as given in the picture below. **

**(If there are two digits -----------> multiply by 100, **

**three digits -----------> multiply by 1000 and so on )**

**Note : In (1), we have only repeated patterns after the decimal.**

**Step 6 : **

**Count the number of digits between the decimal point and second repeated pattern as given in the picture below.**

**Step 7 :**

**Since there are 3 digits between the decimal point and the second repeated pattern, we have to multiply the given decimal by 1000 as given in the picture below. **

**Note : In (2), we have only repeated patterns after the decimal.**

**Step 8 :**

**Now, we have to subtract the result of step 5 from step 7 as given in the picture below. **

**Now we got the fraction which is equal to the given decimal**

To have better understanding on conversion of non terminating repeating decimals to fraction, let us look at some problems.

**Problem 1 :**

Covert the given non terminating repeating decimal into fraction

**32.03256256256..........**

**Solution : **

Let X = 32.03256256256.............

Here, the repeated pattern is 256

No. of digits between the 1st repeated pattern and decimal = 2

So, multiply the given decimal by 100. Then, we have

**100X = 3203.256256256...............----------(1) **

No. of digits between the 2nd repeated pattern and decimal = 5

So, multiply the given decimal by 100000. Then, we have

**100000X = 3203256.256256256...............----------(2)**

(2) - (1) --------> 99900X = 3200053

X = 3200053 / 99900

**Hence, 32.03256256256.......... = 3200053 / 99900**

**Problem 2 :**

Covert the given non terminating repeating decimal into fraction

**0.01232222........**

**Solution : **

Let X = 0.01232222.............

Here, the repeated pattern is 2

No. of digits between the 1st repeated pattern and decimal = 4

(Here, the first repeated pattern starts after four digits of the decimal)

So, multiply the given decimal by 10000. Then, we have

**10000X = 123.2222...............----------(1) **

No. of digits between the 2nd repeated pattern and decimal = 5

So, multiply the given decimal by 100000. Then, we have

**100000X = 1232.2222...............----------(2)**

(2) - (1) --------> 90000X = 1109

X = 1109 / 90000

**Hence, 0.01232222........... = 1109 / 90000**

**Problem 3 :**

Covert the given non terminating repeating decimal into fraction

**2.03323232..........**

**Solution : **

Let X = 2.03323232.............

Here, the repeated pattern is 32

No. of digits between the 1st repeated pattern and decimal = 2

(Here, the first repeated pattern starts after two digits of the decimal)

So, multiply the given decimal by 100. Then, we have

**100X = 203.323232...............----------(1) **

No. of digits between the 2nd repeated pattern and decimal = 4

So, multiply the given decimal by 10000. Then, we have

**10000X = 20332.323232...............----------(2)**

(2) - (1) --------> 9900X = 20129

X = 9900 / 20129

**Hence, 2.03323232.......... = 9900 / 20129**

**Problem 4 :**

Covert the given non terminating repeating decimal into fraction

**0.252525..........**

**Solution : **

Let X = 0.252525.............

Here, the repeated pattern is 25

No. of digits between the 1st repeated pattern and decimal = 0

So, multiply the given decimal by 1. Then, we have

**X = 0.252525...............----------(1) **

No. of digits between the 2nd repeated pattern and decimal = 2

So, multiply the given decimal by 100. Then, we have

**100X = 25.252525...............----------(2)**

(2) - (1) --------> 99X = 25

X = 25 / 99

**Hence, 0.252525.......... = 25 / 99**

**Problem 5 :**

Covert the given non-terminating repeating decimal into fraction

**3.3333..........**

**Solution : **

Let X = 3.3333.............

Here, the repeated pattern is 3

No. of digits between the 1st repeated pattern and decimal = 0

(Here, the first repeated pattern is "3" which comes right after the decimal point)

So, multiply the given decimal by 1. Then, we have

**X = 3.3333...............----------(1) **

No. of digits between the 2nd repeated pattern and decimal = 1

(Here, the second repeated pattern is "3" which comes one digit after the decimal point)

So, multiply the given decimal by 10. Then, we have

**10X = 33.3333...............----------(2)**

(2) - (1) --------> 9X = 30

X = 30 / 9 = 10 / 3

**Hence, 3.3333.............. = 10 / 9**

**Problem 6 :**

Covert the given non-terminating repeating decimal into fraction

**1.023562562562..........**

**Solution : **

Let X = 1.023562562562.............

Here, the repeated pattern is 562

No. of digits between the 1st repeated pattern and decimal = 3

So, multiply the given decimal by 1000. Then, we have

**1000X = 1023.562562562...............----------(1) **

No. of digits between the 2nd repeated pattern and decimal = 6

So, multiply the given decimal by 1000000. Then, we have

**1000000X = 1023562.562562562...............----------(2)**

(2) - (1) --------> 999000X = 1022538

X = 1022539 / 999000

**Hence, 1.023562562562.......... = ****1022539 / 999000**

**In the above examples, all the non terminating decimals have been converted into fractions. Because all these non terminating decimals have repeated patters. **

**But, in "non recurring decimals", we will not have repeated pattern. Hence, we can not convert "non recurring decimals" into fractions. **

After having gone through the stuff and examples, we hope that the students would have understood, "non recurring decimals"

**Related Topics**

__Converting percent into fractions__

__Converting improper fractions into mixed fractions__

__Converting mixed fractions into improper fractions__

**Converting decimals into fractions**

HTML Comment Box is loading comments...