Example 1 :
Find the product of the following complex numbers :
(cos2θ + isin2θ)(cos3θ + isin3θ)
Solution :
Convert the above complex numbers to exponential form.
cos2θ + isin2θ = ei2θ
cos3θ + isin3θ = ei3θ
(cos2θ + isin2θ)(cos3θ + isin3θ) :
= ei2θ ⋅ ei3θ
= ei2θ + i3θ
= ei(2θ + 3θ)
= ei5θ
= cos5θ + isin5θ
Example 2 :
Find the product of the following complex numbers :
(cos4θ + isin4θ)-6(cosθ + isinθ)8
Solution :
Convert the above complex numbers to exponential form.
cos4θ + isin4θ = ei4θ
cosθ + isinθ = eiθ
(cos4θ + isin4θ)-6(cosθ + isinθ)8 :
= (ei4θ)-6 ⋅ (eiθ)8
= e-i24θ ⋅ ei8θ
= e-i24θ + i8θ
= ei(-24θ + 8θ)
= ei(-16θ)
= e-i16θ
= cos16θ - isin16θ
Example 3 :
Find the product of the following complex numbers :
(cos4θ + isin4θ)12(cos5θ - isin5θ)-6
Solution :
Convert the above complex numbers to exponential form.
cos4θ + isin4θ = ei4θ
cos5θ - isin5θ = e-i5θ
(cos4θ + isin4θ)12(cos5θ - i sin5θ)-6 :
= (ei4θ)12 ⋅ (e-i5θ)-6
= ei48θ ⋅ ei30θ
= ei48θ + i30θ
= ei(48θ + 30θ)
= ei78θ
= cos78θ + isin78θ
Example 4 :
Find the division of the following complex numbers
(cosα + isinα)3/(sinβ + icosβ)4
Solution :
In the above division, complex number in the denominator is not in polar form.
First, convert the complex number in denominator to polar form.
sinβ + icosβ = cos(90 - β) + isin(90 - β)
Then,
(cosα + isinα)3/(sinβ + icosβ)4 :
= (cosα + isinα)3/[cos(90 - β) + isin(90 - β)]4
Convert the above complex numbers to exponential form.
cosα + isinα = ei4α
cos(90° - β) + isin(90° - β) = ei(90° - β)
Then,
= (ei4α)3/(ei(90° - β))4
= (ei12α)/(ei(360° - 4β))
Write the division as multiplication by changing the sign of the exponent in denominator.
= (ei12α) ⋅ (e-i(360° - 4β))
= ei12α - i(360° - 4β)
= ei[4α - (360° - 4β)]
= ei[4α - 360° + 4β)]
= ei[4α + 4β - 360°]
= cos(4α + 4β - 360°) + isin(4α + 4β - 360°)
= cos[-(360-(4α + 4β))] + isin[-(360-(4α + 4β))]
= cos(4α + 4β) - isin[360-(4α + 4β)]
= cos(4α + 4β) + i sin(4α + 4β)
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
May 11, 25 12:34 AM
May 10, 25 09:56 AM
May 10, 25 12:14 AM