In this section, you will learn how to multiply binomials.
Every term in first binomial has to be multiplied by every term in the second binomial.
Let us look at some examples to understand the above concept.
Example 1 :
Simplify :
(2a + 3b)(5a + 4b)
Answer :
= (2a + 3b)(5a + 4b)
= 2a(5a) + 2a(4b) + 3b(5a) + 3b(4b)
= 10a2 + 8ab + 15ab + 12b2
Combine the like terms.
= 10a2 + 23ab + 12b2
Example 2 :
Simplify :
(5 - 2y)(4 + y)
Answer :
= (5 - 2y)(4 + y)
= 5(4) + 5(y) - 2y(4) - 2y(y)
= 20 + 5y - 8y - 2y2
Combine the like terms.
= 20 - 3y - 2y2
Example 3 :
Simplify :
(3 + 2p)(4p - 3)
Answer :
= (3 + 2p)(4p - 3)
= 3(4p) + 3(-3) + 2p(4p) + 2p(-3)
= 12p - 9 + 8p2 - 6p
Combine the like terms.
= 8p2 + 6p - 9
Example 4 :
Simplify :
(2m + 3)(m + 5)
Answer :
= (2m + 3)(m + 5)
= 2m(m) + 2m(5) + 3(m) + 3(5)
= 2m2 + 10m + 3m + 15
Combine the like terms.
= 2m2 + 13m + 15
Example 5 :
Simplify :
(3p - 2q)(p + 5q)
Answer :
= (3p - 2q)(p + 5q)
= 3p(p) + 3p(5q) - 2q(p) - 2q(5q)
= 3p2 + 15pq - 2pq - 10q2
Combining the like terms
= 3p2 + 13pq - 10q2
Example 6 :
Simplify :
(5a + 3b)(a - 2b)
Answer :
= (5a + 3b)(a - 2b)
= 5a(a) + 5a(-2b) + 3b(a) + 3b(-2b)
= 5a2 - 10ab + 3ab - 6b2
Combine the like terms.
= 5a2 - 7ab - 6b2
Example 7 :
Simplify :
(p - 2)(p - 3)
Answer :
= (p - 2)(p - 3)
= p(p) + p(-3) - 2(p) - 2(-3)
= p2 - 3p - 2p + 6
Combine the like terms.
= p2 - 5p + 6
Example 8 :
Simplify :
(p2 - 3)(p + 4)
Answer :
= (p2 - 3)(p + 4)
= p2(p) + p2(4) - 3(p) - 3(4)
= p3 + 4p2 - 3p - 12
Example 9 :
Simplify :
(t + 5)(t - 5)
Answer :
= (t + 5)(t - 5)
Using the identity, a2 - b2 = (a + b)(a - b),
= t2 - 52
= t2 - 25
Example 10 :
Simplify :
(2p + 3q)(2p - 3q)
Answer :
= (2p + 3q)(2p - 3q)
Using the identity, a2 - b2 = (a + b)(a - b),
= (2p)2 - (3q)2
= 22p2 - 32q2
= 4p2 - 9q2
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
May 22, 25 09:59 AM
May 21, 25 01:19 PM
May 21, 25 05:33 AM