## MATH PRACTICE TEST FOR 9th GRADE

Problem 1 :

Find the area of the design as shown below.

Solution :

Area of rectangle  =  l x b

Area of semicircle  πr2/2

Area of equilateral triangle  =  (√3/4)⋅a2

=  πr2/2 + l x b + (√3/4)⋅a2

=  (1/2)⋅(22/7)⋅72 + 20  14 + (√3/4)⋅142

=  441.368 cm2

Problem 2 :

A cow is tied to one of the corners of a square-shaped field of sides of 10 m. The length of the rope is 7 m. How would one find the area of the field that the cow cannot graze?

Solution :

Area of square field  =  102

Area of the filed that cow can graze  =  πr2/4

=  (1/4) ⋅ (22/7) ⋅ 7 ⋅ 7

=  77/2

Area of the filed that cow can graze  =  100 - 77/2

=  61.5 m2

Problem 3 :

Write the number 0.000001024 in scientific notation

Solution :

0.000001024  =  1.024 x 106

Problem 4 :

Write the number 1.423 × 10-6 in decimal form.

Solution :

=   1.423 × 10-6

=  1.423/1000000

=  0.000001423

Problem 5 :

Perform the calculation and write the answer of the following in scientific notation.

(2000)2 ÷ (0.0001)4

Solution :

(2000)2 ÷ (0.0001)4

=  (2x103)÷ (1x10-4)4

=  (4x106÷ (1x10-16).

=  4x106+16

=  4x1022

Problem 6 :

Solve for x

3  =  logx729

Solution :

x3  =  729

x3  =  36

x3  =  (32)3

x  =  9

So, the value of x is 9.

Problem 7 :

Change 2  =  6416 to logarithmic form.

Solution :

2  =  6416

log64 2  =  16

Problem 8 :

Evaluate

log9 (1/27)

Solution :

log9 (1/27)

=  log9 (1/3)3

=  log9 3-3

=  -1log9 3

=  -1/log39

=  -1/log332

=  -1/2log33

=  -1/2

Problem 9 :

How many integers between 100 and 999, inclusive, have the property that some permutation of its digits is a multiple of 11 between 100 and 999 For example, both 121 and 211 have this property.

Solution :

110, 121, .........990

n  =  [(l-a)/d]+1

n  =  (990-110)/11 + 1

n  =  (880/11) + 1

n  =  81

Number of three digit numbers divisible by 11 is 81.

Each number will consist of three digits, using these three digits we can make 6 possible 3 digit numbers.

81 x 6  =  486

In 486 numbers we have repeated counting.

For example, the number abc is divisible by 11, then cba is also divisible by 11. (Divisibility rule for 11)

So, 486/2  =  243

In those 243 numbers, we may have numbers consisting of one zero.

110, 220, 330, 440, 550, 660, 770, 880, 990

In this way, we can get 9 numbers. If we use the digits in the different places, that will not be divisible by 11 or it must a two digit number.

If the middle digit is 0, then

209, 307, 407, 506 by reversing the digits we will get 902, 703, 704, 605. So 8 numbers.

=  243 - (9+8)

=  226

Problem 10 :

Obtain the set builder representation of the set

A  =  {1, 1/2, 1/3, 1/4, 1/5, 1/6}

Solution :

A  =  {x: x  =  1/n where n is a integer}

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

If you have any feedback about our math content, please mail us :

v4formath@gmail.com

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6