MANIPULATING EXPRESSIONS INVOLVING ALPHA NAD BETA

α2=  (α+β)2 - 2αβ

α-β  =  (α+β)- 4αβ

α33  =  (α-β)+ 3αβ(α-β)

α44  =  (α22)- 2α2β2

Question 1 :

If α and β are the roots of the equation

3x2-5x+2  =  0

then find the values of

(i) (α/β) + (β/α)

(ii) α - β

(iii) (α²/β) + (β²/α)

Solution :

By comparing the given quadratic equation with the general form of quadratic equation, we get

a  =  3, b  =  -5 and c = 2

Sum of roots :

α+β  =  -b/a

α+β  =  -(-5)/3

α+β  =  5/3

Product of roots :

αβ  =  c/a  

αβ  =  2/3

(i)  (α/β)+(β/α)

By combining the above fractions, we get

(α/β)+(β/α)  =  (α22)/αβ  -----(1)

α22  =  (α+β)2-2αβ

=  (5/3)2-2(2/3)

=  (25/9)-(4/3)

=  (25-12)/9

α22  =  13/9

By applying the values in (1), we get

 (α/β) + (β/α)  =  (α22)/αβ

=  (13/9)/(2/3)

 (α/β) + (β/α)  =  13/6

(ii) α - β

α-β  =  √(α+β)2 - 4αβ

=  √(5/3)2-4(2/3)

=  √(25/9)-(8/3)

=  √1/9

α-β  =  ± 1/3

(iii)  (α2/β) + (β2/α)

By combining the given fractions, we get

2/β) + (β2/α)  =  (α33)/αβ  ----(1)

α33  =  (α-β)+ 3αβ(α-β)

=  (5/3)3-3(2/3)(5/3)

=  (125/27)-(10/9)

α33  =  95/27

By applying the values in (1), we get

2/β) + (β2/α)  =  (95/27)/(2/3)

2/β) + (β2/α)  =  95/18

Question 2 :

If α and β are the roots of

3x2-6x+4  =  0

find the value of α22

Solution :

 a = 3  b = - 6 and c = 4

α22  =  (α+β)- 2αβ  ----(1)

Sum of roots :

α+β  =  -b/a

=  -(-6)/3

α+β  =  2

Product of roots :

αβ  =  c/a  

αβ  = 4/3

By applying the values in (1), we get

=  22-2(4/3)

=  4-(8/3)

=  4/3

Question 3 :

If roots of the equation x2 + x + r = 0 are α and β and α33 = -6. Find the value of r.

Solution :

x2 + x + r = 0

a = 1, b = 1 and c = 1

α33 = -6

α3= (α + β)3 - 3αβ (α + β)

(α + β) = -b/a and α β = c/a

(α + β) = -1/1 and α β = r/1

α3= (-1)3 - 3(r) (1)

-6 = -1 - 3r

-6 + 1 = 3r

3r = -5

r = -5/3

So, the value of r is -5/3.

Question 4 :

If difference between the roots of the equation x2 - kx + 8 = 0 is 4, then find the value of k.

Solution :

For any quadratic equation, which is in the form ax2 + bx + c = 0 the roots are α and β

Sum of the roots α + β = -b/a

Product of roots α β = c/a

Difference of the roots

α - β = √[(α + β)2 - 4 α β]

 x2 - kx + 8 = 0

a = 1, b = -k and c = 8

α + β = k/1 ==> k

α β = 8/1 ==> 8

α - β = k2 - 4 (8)

Applying the value of α - β, we get

4 = √(k2 - 32)

(k2 - 32) = 16

k2 = 32 + 16

k2 = 48

k = √48

k = √2 ·· 2 · 2 · 3

k = (2 · 2)√3

k = ± 4√3

k = 4√3 and -4√3

So, the values of k are -4√3 and 4√3.

Question 5 :

If one of the roots of the equation

x2 + px + a = 0 is 3+2

then find the value of p and a is.

Solution :

Every quadratic equation will have two roots α and β. If rational number will be one of the given roots, its conjugate will be the other root.

For example,

if  a + √b is one of the roots then its conjugate  a - √b will be other root.

Since for the given equation 2 + 3 be one root, then its conjugate 2 - 3 will be the other root.

α = 2 + 3 and β = 2 - 3

Sum of roots :

α + β = 2 + 3 + 2 - 3 ==> 4

Product of roots :

α  β = (2 + 3)  (2 - 3)

= 22 - 32

= 4 - 3

α  β = 1

From the equation,

x2 + px + a = 0

α + β = -p/1 ==> -p

4 = -p

p = -4

So, the value of p is -4

From the equation,

x2 + px + a = 0

α β = a/1 ==> a

1 = a

So, the value of a is 1.

Question 6 :

If one root of the equation 

px2 + qx + r = 0 

is r then other roots of the equation will be

a)  1/q      b)  1/r      c)  1/p      d) 1/(p + q)

Solution :

px2 + qx + r = 0

One root of the equation is α = r, then β = ?

From the given equation, we get

Sum of roots = α + β = -q/p ---(1)

Product of roots = α β = r/p ----(2)

Applying the value α = r in (1) and (2), we get

r + β = -q/p

r β = r/p

β = 1/p

So, the other roots is 1/p. Option c is correct.

Question 7 :

One root of the equation 

x2 - 2(5 + m) x + 3(7 + m) = 0

is reciprocal of the other. Find the value of m.

a)  -7      b)  7      c)  1/7      d) -1/7

Solution :

x2 - 2(5 + m) x + 3(7 + m) = 0

x2 - (10 - 2m) x + (21 + 3m) = 0

Sum of roots = α + β = (10 - 2m)/1 ---(1)

Product of roots = α β = (21 + 3m)/1 ----(2)

α and 1/α are the roots.

 α (1/α) = (21 + 3m)

1 = 21 + 3m

1 - 21 = 3m

m = -20/3

m = -6.6

Approximately the value of m is -7.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Oct 01, 24 12:04 PM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 47)

    Oct 01, 24 11:49 AM

    Digital SAT Math Problems and Solutions (Part - 47)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 46)

    Sep 30, 24 11:38 AM

    digitalsatmath41.png
    Digital SAT Math Problems and Solutions (Part - 46)

    Read More