LIMITS AT INFINITY WITH VARIABLE N

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Question 1 :

Show that lim n->∞ (1 + 2 + 3 + .........+ n) / (3n2+ 7n +2)  =  1/6

Solution :

=  lim n->∞ (1 + 2 + 3 + .........+ n) / (3n2+ 7n +2) 

By using the formula for n natural numbers.

=  lim n->∞ (n(n+1)/2) / (3n2+ 7n + 2) 

=  lim n->∞ (n2 + n) / 2(3n2+ 7n + 2) 

=  lim n->∞ (1 + 1/n) / (6 + 14/n + 2/n2

By applying the limit, we get

  =  1/6

Hence the value of Show that lim n->∞ (1 + 2 + 3 + .........+ n) / (3n2+ 7n +2) is 1/6.

Question 2 :

Show that lim n->∞ (12+22+.........+(3n)2) / (1+2+....+5n)(2n+3)  =  9/25

Solution :

=  lim n->∞ (12+22+.........+(3n)2) / (1+2+....+5n)(2n+3)

=  lim n->∞ (3n(3n+1)(3n+2)/6) / (5n(5n+1)/2)(2n+3)

=  lim n->∞ (3n(3n+1)(3n+2)/6) / (5n(5n+1)(2n+3)/2)

=  lim n->∞ 3n(2)(3n+1)(3n+2)/(6(5n)(5n+1)(2n+3)

=  lim n->∞ (3n+1)(3n+2) / 5(5n+1)(2n+3)

=  lim n->∞ (1/5)(9n2+9n+2) / (10n2+17n+3)

Let us divide numerator and denominator by n2

=  lim n->∞ (1/5)(9 + 9/n + 2/n2) / (10 + 5/n + 3/n2)

By applying the limit, we get

=  (1/5) (9/10)

=  9/50

Hence the value of lim n->∞ (12+22+.........+(3n)2) / (1+2+....+5n)(2n+3) is 9/50.

Question 3 :

Show that lim n->∞ (1/1β‹…2 + 1/2β‹…3 + 1/3β‹…4+....+1/n(n+1))  = 1

Solution :

Let us write

1/1β‹…2 as (1/1) - (1/2)  =  (2 - 1)/1β‹…2  =  1/1β‹…2 ----(1)

1/2β‹…3  =  (1/2) - (1/3)  =  (3 - 2)/2β‹…3  =  1/2β‹…3 ----(2)

1/3β‹…4  =  (1/3) - (1/4)  =  (4 - 3)/3β‹…4  =  1/3β‹…4 ----(3)

(1) + (2) + (3) ==>

  =  (1/1)-(1/2)+(1/2)-(1/3)+(1/3)-(1/4)+........(1/n)- (1/(n+1))

  =  1 - (1/(n+1))

  =  lim n->∞  [1 - (1/(n+1))]

By applying the limit, we get

  =  1

Hence the value of  lim n->∞ (1/1β‹…2 + 1/2β‹…3 + 1/3β‹…4+....+1/n(n+1)) is 1.

Question 4 :

 An important problem in fishery science is to estimate the number of fish presently spawning in streams and use this information to predict the number of mature fish or β€œrecruits” that will return to the rivers during the reproductive period. If S is the number of spawners and R the number of recruits, β€œBeverton-Holt spawner recruit function” is R(S) = S/(Ξ±S + α΅¦where a and b are positive constants. Show that this function predicts approximately constant recruitment when the number of spawners is sufficiently large.   

Solution :

When the number of spawners is sufficiently large means S -∞ 

R(S) = S/(Ξ± S + α΅¦

=  lim S->∞ S/(Ξ± S + α΅¦

Dividing the equation by S, we get

=  lim S->∞ 1/(Ξ± + α΅¦/S

By applying the limit, we get

1/Ξ±

Hence the answer is 1/Ξ±.

Question 5 :

A tank contains 5000 litres of pure water. Brine (very salty water) that contains 30 grams of salt per litre of water is pumped into the tank at a rate of 25 litres per minute. The concentration of salt water after t minutes (in grams per litre) is C(t) = 30t/(200 + t).What happens to the concentration as  -∞ 

Solution :

To find the quantity of concentration as  -∞ 

C(t) = lim x->∞ 30t/(200 + t)

C(t) = lim x->∞ 30/(200/t + 1)

=  30/1

=  30

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

Β©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 36)

    Nov 28, 25 09:55 AM

    digitalsatmath409.png
    10 Hard SAT Math Questions (Part - 36)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 7)

    Nov 26, 25 09:03 AM

    Digital SAT Math Problems and Solutions (Part - 7)

    Read More

  3. Hcf and Lcm Word Problems

    Nov 21, 25 09:03 AM

    Hcf and Lcm Word Problems

    Read More