LIMIT AND CONTINUITY OF FUNCTIONS OF TWO VARIABLES

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Suppose that A = {(x, y) a < x < b,c < y < d} βŠ‚ R2, F : A -> R . We say that F is continuous at (u, v) if the following hold :

(1) F is defined at (u, v)

(2) lim (x, y) -> (u,v) F (x, y)  =  L exits

(3) L  =  F(u, v).

The following results are true for multivariable functions:

1. The sum, diΒ€erence and product of continuous functions is a continuous function.

2. The quotient of two continuous functions is continuous as long as the denominator is not 0.

3. Polynomial functions are continuous.

4. Rational functions are continuous in their domain.

5. If f (x ; y) is continuous and g(x) is defined and continuous on the range of f, then g(f (x ; y)) is also continuous.

Problem 1 :

Evaluate lim (x, y) -> (1, 2) g(x, y), if the limit exists, where

g(x, y)  =  (3x2 - xy) / (x2+y2+3)

Solution :

To check if the given limit exist

Let us approach origin along x axis.

lim (x, y) -> (x, 0) g(x, y) 

=  lim (x, y) -> (x, 0)(3x2 - 0) / (x2+0+3)

=  3x2 / (x2+3)  β‰  βˆž

Let us approach origin along y axis.

lim (x, y) -> (0, y) g(x, y) 

=  lim (x, y) -> (0, y)(3(0)2 - y) / (02+y+3)

=  -y/(y+3)  β‰  βˆž

To evaluate, we have to apply x  =  1 and y  =  2

g(x, y)  =  (3x2 - xy) / (x2+y2+3)

g(x, y) -> (1, 2)  =  (3(1)2 - (1)(2)) / (12+22+3)

g(x, y) -> (1, 2)  =  (3-2) / (1+4+3)

g(x, y) -> (1, 2)  =  1/8

So, the value of g(x, y)  =  (3x2 - xy) / (x2+y2+3) is 1/8.

Problem 2 :

Evaluate

lim (x, y) -> (0, 0) cos [(x3+y2)/(x+y+2)]

If the limit exists.

Solution :

First let us check, if the limit exists.

First let us approach (0, 0) along x-axis.

Then f(x, 0) 

=  cos [(x3+02)/(x+0+2)]

=  cos [x3/(x+2)]

Approaching (0, 0) along y-axis.

Then f(0, y) 

=  cos [(03+y2)/(0+y+2)]

=  cos [y2/(y+2)]

So, limit exists.

=  lim (x, y) -> (0, 0) cos [(x3+y2)/(x+y+2)]

=  lim (x, y) -> (0, 0) cos [(03+02)/(0+0+2)]

=  lim (x, y) -> (0, 0) cos (0/2)

=  lim (x, y) -> (0, 0) cos 0

=  1

Problem 3 :

Let

f(x, y)  =  (y2-xy)/(√x-√y)

for (x, y) β‰  0. Show that lim (x, y) -> (0, 0) f(x, y)  =  0.

Solution :

f(x, y)  =  (y2-xy)/(√x-√y)

By doing the direct substitution, we will get the indeterminant form.

So,

f(x, y)  =  lim (x, y) -> (0, 0) (y2-xy)/(√x-√y)

Multiply by the conjugate of denominator, we get

=  lim (x, y) -> (0, 0) [(y2-xy)/(√x-√y)] β‹…[(√x+√y)/(√x+√y)]

=  lim (x, y) -> (0, 0) [y(y-x)(√x+√y)/(x-y)]

=  lim (x, y) -> (0, 0) [-y(x-y)(√x+√y)/(x-y)]

=  lim (x, y) -> (0, 0) [-y(√x+√y)]

Applying x and y as 0, we get

=  0

So, the answer is 0.

Problem 4 :

Evaluate lim (x, y) -> (0, 0) cos (ex sin y/y), if the limit exists.

Solution :

=  lim (x, y) -> (0, 0) cos (ex sin y/y)

To check of if the limit exists or not, we will approach the origin along x-axis.

f(x, 0)

=  lim (x, y) -> (x, 0) cos (elim (x, y) -> (x, 0) sin y/y)

=  lim (x, y) -> (x, 0) cos (e)β‰ βˆž

we will approach the origin along y-axis.

f(0, y)

=  lim (x, y) -> (0, y) cos (elim (x, y) -> (0, y) sin y/y) β‰ βˆž

So, the limit exists.

By applying x = 0 and y = 0, we get

=  cos (e0 )

=  cos 1

Problem 5 :

Let g(x, y)  =  x2y/(x4+y2) for f(x, y) β‰  0 and f(0, 0)  =  0

(i)  Show that lim (x, y) -> (0, 0) g(x, y)  =  0 along every line y = mx, m βˆˆ β„

(ii)  Show that lim (x, y) -> (0, 0)  g(x, y)  =  k/(1+k2) along every parabola y = kx2, m βˆˆ β„\{0}

Solution :

(i)  Let us apply y = mx

g(x, y)  =  x2(mx)/(x4+(mx)2)

g(x, y)  =  mx3/(x4+m2x2)

g(x, y)  =  mx/(x2+m2)

lim (x, y) -> (0, 0) g(x, y)  =  lim (x, y) -> (0, 0) mx/(x2+m2)

=  0

(ii)  Let us apply y = kx2

g(x, y)  =  x2(kx2)/(x4+(kx2)2)

g(x, y)  =  kx4/(x4+k2x4)

g(x, y)  =  k/(1+k2)

lim (x, y) -> (0, 0) g(x, y)  =  lim (x, y) -> (0, kx2k/(1+k2)

Problem 6 :

Show that

f(x, y)  =  (x2-y2)/(y2+1)

is continuous at every (x, y) βˆˆ β„2.

Solution :

f(x, y)  =  (x2-y2)/(y2+1)

Let (x, y) -> (a, b) βˆˆ β„2.

lim (x, y) -> (0, kx2)f(x, y)  =  lim (x, y) -> (a,b)(x2-y2)/(y2+1)

=  (a2-b2)/(b2+1)

We get the defined value.

So, the given function is continuous every (x, y).

Problem 7 :

Let g(x, y)  =  ey sin x/x, for x β‰  0 and g(0, 0). Show that g is continuous at (0, 0).

Solution :

lim(x, y) -> (0, 0) g(x, y)  =  lim(x, y) -> (0, 0) (ey sin x/x)

=  lim(x, y) -> (0, 0) (ey ) lim(x, y) -> (0, 0)(sin x/x)

=  1 (1)

=  1

Problem 8 :

Is

f (x ; y) = x2y + 3 xy4 - x + 2y

continuous at (0; 0) ? Where is it continuous?

Solution :

f (x ; y) is a polynomial function, therefore it is continuous on R2. In particular, it is continuous at (0;0).

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

Β©All rights reserved. onlinemath4all.com

Recent Articles

  1. Quantitative Reasoning Questions and Answers

    Dec 14, 25 06:42 AM

    Quantitative Reasoning Questions and Answers

    Read More

  2. Specifying Units of Measure

    Dec 14, 25 06:38 AM

    Specifying Units of Measure

    Read More

  3. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More