LENGTH OF ARC WORKSHEET

Question 1 :

Find the length of the arc whose radius is 42 cm and central angle is 60° (Take π    3.14 and round your answer to the nearest hundredth, if necessary).

Question 2 :

Find the length of the arc whose radius is 10.5 cm and central angle is 36° (Take π    3.14 and round your answer to the nearest hundredth, if necessary).

Question 3 :

Find the length of the arc whose radius is 21 cm and central angle is 120° (Take π    3.14 and round your answer to the nearest hundredth, if necessary).

Question 4 :

Find the length of an arc, if the radius of circle is 14 cm and area of the sector is 63 square cm.

Question 5 :

Find the length of arc, if the perimeter of a sector is 45 cm and radius is 10 cm.

Question 6 :

Find the arc length whose central angle is 180° and perimeter of circle is 64 cm.

Question 7 :

Find the area of the sector whose arc length is 20 cm and radius is 7 cm.

Question 8 :

A pendulum swings through an angle of 30° and describes an arc length of 11 cm. Find the length of the pendulum.

Question 1 :

Find the length of the arc whose radius is 42 cm and central angle is 60° (Take π    3.14 and round your answer to the nearest hundredth, if necessary).

Arc length is

=  (θ/360°) ⋅ 2πr

Substitute r  =  42, θ  =  60° and π    3.14.

(60°/360°) ⋅ 2 ⋅ (3.14) ⋅ 42

=  (1/6) ⋅ 263.76

=  43.96

So, the length of the arc is about 43.96 cm.

Question 2 :

Find the length of the arc whose radius is 10.5 cm and central angle is 36° (Take π    3.14 and round your answer to the nearest hundredth, if necessary).

Arc length is

=  (θ/360°) ⋅ 2πr

Substitute r  =  10.5 and θ  =  36° and π    3.14.

(36°/360°) ⋅ 2 ⋅ (3.14) ⋅ 10.5

=  (1/10) ⋅ 65.94

=  6.59

So, the length of the arc is about 6.59 cm.

Question 3 :

Find the length of the arc whose radius is 21 cm and central angle is 120° (Take π    3.14 and round your answer to the nearest hundredth, if necessary).

Arc length is

=  (θ/360°) ⋅ 2πr

Substitute r  =  21 and θ  =  120° and π    3.14.

(120°/360°) ⋅ 2 ⋅ (3.14) ⋅ 21

=  (1/3) ⋅ 131.8

=  43.96

So, the length of the arc is about 43.96 cm.

Question 4 :

Find the length of an arc, if the radius of circle is 14 cm and area of the sector is 63 square cm.

Area of the sector  =  63 square cm

lr/2  =  63

Substitute r  =  14 cm.

l(14)/2  =  63

l(7)  =  63

l  =  9 cm

So, the required arc length is 9 cm.

Question 5 :

Find the length of arc, if the perimeter of a sector is 45 cm and radius is 10 cm.

Perimeter of sector  =  45 cm

l + 2r  =  45

Substitute r  =  10 cm.

l + 2(10)  =  45

l + 20  =  45

l  =  45 - 20

l  =  25 cm

Question 6 :

Find the arc length whose central angle is 180° and circumference of the circle is 64 cm.

Circumference of circle  =  64 cm

2πr  =  64

Arc length is

l  =  (θ/360°) ⋅ 2πr

Substitute θ  =  180° and 2πr  =  64.

l  =  (180°/360°) ⋅ 64

l  =  (1/2) ⋅ 64

l  =  32 cm

l  =  32 cm

Question 7 :

Find the area of the sector whose arc length is 20 cm and radius is 7 cm.

Area of sector  =  lr/2

Substitute l  =  20 and r  =  7.

Area of sector  =  (20 x 7) / 2

Area of sector  =  70 square units.

Question 8 :

A pendulum swings through an angle of 30° and describes an arc length of 11 cm. Find the length of the pendulum.

Arc length of sector  =  11 cm

sector angle  =  30°

If the pendulum swings once, then it forms a sector and the radius of the sector is the length of the pendulum.

So,

l  =  (θ/360°) x 2πr

Substitute the known values and solve for r.

11  =  (30°/360°) x 2 x (22/7) x r

11  =  (1/12) x 2 x (22/7) x r

r  =  (11 x 7 x 12)/(2 x 22)

r  =  7 x 3

r  =  21 cm

So, the length of pendulum is 21 cm.

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

Recent Articles

1. Finding the Slope of a Tangent Line Using Derivative

Mar 01, 24 10:45 PM

Finding the Slope of a Tangent Line Using Derivative

2. Implicit Differentiation

Mar 01, 24 08:48 PM

Implicit Differentiation - Concept - Examples

3. Logarithmic Differentiation

Mar 01, 24 08:12 AM

Logarithmic Differentiation