# INTRODUCTION TO RATIONAL NUMBERS

## About "Introduction to rational numbers"

Introduction to rational numbers :

A number that is expressed in the form a/b is called as rational number.

Here, both "a" and "b" are integers and also b ≠ 0.

## Introduction to rational numbers

Can you tell the natural numbers between 2 and 5 ?

They are 3 and 4.

Can you tell the integers between – 2 and 4 ?

They are – 1, 0, 1, 2, 3.

Now, Can you find any integer between 1 and 2?

No.

But, between any two integers, we have rational numbers.For example, between 0 and 1, we can find rational numbers 1/10, 2/10, 3/10, .....which can be written as 0.1, 0.2, 0.3,.....

Similarly, we know that the numbers 1/4, 1/2, 3/4 are lying between 0 and 1. These are rational numbers which can be written as 0.25, 0.5, 0.75 respectively.

Now, consider 2/5 and 4/5.

Can you find any rational number between 2/5 and 4/5 ?

Yes. There is a rational number 3/5

In the same manner, we know that the numbers 1/5, 2/5, 3/5 and 4/5 are lying between 0 and 1.

Can you find more rational numbers between 2/5 and 3/5 ?

Yes. We write 2/5 as 20/50 and 3/5 as 30/50, then we can find many rational numbers between them.

We can find nine rational numbers 21/50, 22/50, 23/50, 24/50, 25/50, 26/50, 27/50, 28/50 and 29/50.

If we want to find some more rational numbers between 22/50 and 23/50, we write 22/50 as 220/500 and 23/50 as 230/500.

Then we get nine rational numbers 221/500, 222/500, 223/500, 224/500, 225/500, 226/500, 227/500, 228/500 and 229/500.

Let us understand this better with the help of the number line in the figure given below.

Observe the number line between 0 and 1 using a magnifying lens.

Similarly, we can observe many rational numbers in the intervals 1 to 2, 2 to 3 and so on.

If we proceed like this, we will continue to find more and more rational numbers between any two rational numbers.

This shows that there is high density of rational numbers between any two rational numbers.

So, unlike natural numbers and integers, there are countless rational numbers between any two given rational numbers.

## Related topics

After having gone through the stuff given above, we hope that the students would have understood "Introduction to rational numbers".

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

You can also visit our following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6