Intergation of xlnx by Parts

Formula to find integral of a function by parts.

∫udv = uv - ∫vdu

If you find integral of a function which contains lnx, you have to use the method integration by parts. And you have to consider lnx as u and the other part and dx together to be considered as dv.

Consider the following integral.

∫xlnxdx

The above integral can be written as

∫(lnx)(xdx)

Here, u = lnx and dv = xdx.

∫(lnx)(xdx) = uv - ∫vdu 

Considering the stuff on the right side, we need to know u, v, dv and du.

u = lnx


Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 34)

    Nov 15, 25 08:00 AM

    digitalsatmath406.png
    10 Hard SAT Math Questions (Part - 34)

    Read More

  2. Algebra Word Problems Worksheet with Answers

    Nov 10, 25 06:30 PM

    tutoring.png
    Algebra Word Problems Worksheet with Answers

    Read More

  3. Tricky SAT Math Problems Solved Easily

    Nov 09, 25 07:02 PM

    digitalsatmath404.png
    Tricky SAT Math Problems Solved Easily

    Read More