Problem 1 :
∫ (sec √x / √x) dx
Solution :
∫ (sec √x / √x) dx
Let us use substitution method to find the antiderivative of the given.
Let √x = t
Differentiate with respect to x, we get
(1/2 √x) dx = dt
(1/√x) dx = 2dt
∫ (sec √x) (1 / √x) dx = ∫ (sec t)(2 dt)
= 2∫ sec t dt
= 2 log (sec t + tan t) + C
= 2 log (sec √x + tan √x ) + C
Problem 2 :
∫ sin4 x dx
Solution :
∫ sin4 x dx = ∫ (sin2 x)2 dx
= ∫ [(1 - cos 2x)/2]2 dx
= (1/4) ∫ (1 - 2cos 2x + cos2 2x) dx
From cos 2x = 2cos2 x - 1
cos2 x = 1 + cos 2x
cos2 2x = 1 + cos 4x
= (1/4) ∫ (1 - 2cos 2x + (1 + cos 4x)/2] dx
= (1/4) [∫ 1 dx - 2∫cos 2x dx + (1/2)∫(1 + cos 4x) dx]
= (1/4) [x - (2/2) sin 2x + (1/2)(x + (1/4)cos 4x)] + C
= (1/4) [x - sin 2x + (1/2)x + (1/8)cos 4x] + C
= (1/4) x - (1/4) sin 2x + (1/8)x + (1/32)cos 4x + C
= (3/8) x - (1/4) sin 2x + (1/32)cos 4x + C
Problem 3 :
∫ cos 3x dx
Solution :
∫ cos 3x dx = (1/3) sin (3x) + C
Problem 4 :
∫ sin 10x sin 4x dx
Solution :
∫ sin 10x sin 4x dx
- 2 sin C sin D = cos (C + D) - cos (C - D)
= (1/2) [cos (C - D) - cos (C + D)]
Here C = 10 and D = 4
= (1/2) ∫ [cos (10x - 4x) - cos (10x + 4x)] dx
= (1/2) ∫ [cos 6x - cos 14x] dx
= (1/2) [(1/6) sin 6x - (1/14) sin 14x] + C
= [(1/12) sin 6x - (1/28) sin 14x] + C
Problem 5 :
∫ sin 7x cos 3x dx
Solution :
∫ sin 7x cos 3x dx
sin (C + D) + sin (C - D) = 2sin C cos D
sin C cos D = (1/2) [sin (C + D) + sin (C - D)]
Here C = 7x and D = 3x
= (1/2) ∫ [sin (7x + 3x) + sin (7x - 3x)] dx
= (1/2) ∫ [sin 10x + sin 4x] dx
= (1/2) [(-1/10) cos 10x - (1/4) cos 4x] + C
= [(-1/20) cos 10x - (1/8) cos 4x] + C
Problem 6 :
Solution :
cos 2x = 1 - 2sin2x
2sin2x = 1 - cos 2x
Dividing angle by 2 on both sides
2sin2(x/2) = 1 - cos (2x/2)
2sin2(x/2) = 1 - cos x
Problem 7 :
∫ sin3 x dx
Solution :
∫ sin3 x dx
sin 3x = 3 sin x - 4 sin3 x
4 sin3 x = 3 sin x - sin 3x
sin3 x = (1/4) [3 sin x - sin 3x]
∫ sin3 x dx = (1/4)∫ [3 sin x - sin 3x] dx
= (1/4) [-3 cos x + (1/3) cos 3x] + C
= [(-3/4) cos x + (1/12) cos 3x] + C
Problem 8 :
∫ tan3 x dx
Solution :
∫ tan3 x dx
= ∫ tan2 x tan x dx ----(1)
Let t = tan x
dt = sec2 x dx
Using trigonometric identity, let us apply the replacement of tan2 x.
sec2 x - tan2 x = 1
tan2 x = sec2 x - 1
∫ tan2 x tan x dx = ∫ (sec2 x - 1) tan x dx
= ∫(tan x sec2 x - tan x) dx
= ∫tan x sec2 x dx -