INTEGRATION PROBLEMS WORKSHEET

Problem 1 :

∫ (sec √x / √x) dx

Solution :

∫ (sec √x / √x) dx

Let us use substitution method to find the antiderivative of the given.

Let √x = t

Differentiate with respect to x, we get

(1/2 √x) dx = dt

(1/√x) dx = 2dt

∫ (sec √x) (1 / √x) dx = ∫ (sec t)(2 dt)

= 2∫ sec t dt

= 2 log (sec t + tan t) + C

= 2 log (sec √x + tan √x ) + C

Problem 2 :

∫ sin4 x dx

Solution :

∫ sin4 x dx = ∫ (sin2 x)2 dx

 [(1 - cos 2x)/2]2 dx

= (1/4)  (1 - 2cos 2x + cos2 2x) dx

From cos 2x = 2cos2 x - 1

 cos2 x = 1 + cos 2x

 cos2 2x = 1 + cos 4x

= (1/4)  (1 - 2cos 2x + (1 + cos 4x)/2] dx

= (1/4) [ 1 dx - 2cos 2x dx + (1/2)∫(1 + cos 4x) dx]

= (1/4) [x - (2/2) sin 2x + (1/2)(x + (1/4)cos 4x)] + C

= (1/4) [x - sin 2x + (1/2)x + (1/8)cos 4x] + C

= (1/4) x - (1/4) sin 2x + (1/8)x + (1/32)cos 4x + C

= (3/8) x - (1/4) sin 2x + (1/32)cos 4x + C

Problem 3 :

∫ cos 3x dx

Solution :

∫ cos 3x dx = (1/3) sin (3x) + C

Problem 4 :

∫ sin 10x sin 4x dx

Solution :

∫ sin 10x sin 4x dx

- 2 sin C sin D = cos (C + D) - cos (C - D)

= (1/2) [cos (C - D) - cos (C + D)]

Here C = 10 and D = 4

= (1/2) [cos (10x - 4x) - cos (10x + 4x)] dx

= (1/2) [cos 6x - cos 14x] dx

= (1/2) [(1/6) sin 6x - (1/14) sin 14x] + C

= [(1/12) sin 6x - (1/28) sin 14x] + C

Problem 5 :

∫ sin 7x cos 3x dx

Solution :

∫ sin 7x cos 3x dx

sin (C + D) + sin (C - D) = 2sin C cos D

sin C cos D = (1/2) [sin (C + D) + sin (C - D)]

Here C = 7x and D = 3x

= (1/2) [sin (7x + 3x) + sin (7x - 3x)] dx

= (1/2) [sin 10x + sin 4x] dx

= (1/2) [(-1/10) cos 10x - (1/4) cos 4x] + C

= [(-1/20) cos 10x - (1/8) cos 4x] + C

Problem 6 :

Solution :

cos 2x = 1 - 2sin2

2sin2x = 1 - cos 2x

Dividing angle by 2 on both sides

2sin2(x/2) = 1 - cos (2x/2)

2sin2(x/2) = 1 - cos x

Problem 7 :

∫ sin3 x dx

Solution :

∫ sin3 x dx

sin 3x = 3 sin x - 4 sin3 x

4 sin3 x = 3 sin x - sin 3x

sin3 x = (1/4) [3 sin x - sin 3x]

∫ sin3 x dx = (1/4) [3 sin x - sin 3x] dx

= (1/4) [-3 cos x + (1/3) cos 3x] + C

= [(-3/4) cos x + (1/12) cos 3x] + C

Problem 8 :

∫ tan3 x dx

Solution :

∫ tan3 x dx

= ∫ tan2 x tan x dx ----(1)

Let t = tan x

dt = sec2 x dx

Using trigonometric identity, let us apply the replacement of tan2 x.

sec2 x - tan2 x = 1

tan2 x = sec2 x - 1

∫ tan2 x tan x dx = ∫ (sec2 x - 1) tan x dx 

= ∫(tan x sec2 x - tan x) dx 

= ∫tan x sec2 x dx - ∫ tan x dx 

= ∫t  dt - ∫ tan x dx 

 = t2/2 - log (cos x ) + C

Applying the value of t, we get

x = tan2/2 - log (cos x ) + C

Problem 9 :

∫(x2 + 1) √(1+3x+x3) dx

Solution :

Let t = 1+3x+x3

dt = (3x2 + 3)dx

dt = 3(x2 + 1)dx

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More