INTEGRATION OF TRIGONOMETRIC FUNCTIONS WITH INDEFINITE INTEGRALS

Integrate the following :

(1)  cos22 x- sin 6 x

(2)  1/(1+sin x)

(3)  1/(1-cos x)

(4)  √(1 - sin2x)

(5)  cos x/cos (x - a)

(6)  √tan x/sin x cos x

(7)  sin √x/√x

(8)  sin 2x/(a cos2x + b sin2x)

(9)  sin23 x + 4 cos 4 x

Problem 1 :

cos22 x- sin 6 x

Solution :

cos2x = (1 + cos 2x)/2

=  ∫ (cos2x- sin 6 x ] dx

=  ∫cos2x dx  - ∫[ sin 6 x ] dx

=  ∫ [(1 + cos 2x)/2] dx  - ∫[sin 6x] dx

=  (1/2) [x + (sin 2x/2)] - [-cos 6x/6] + C

=  (1/2) [x + (sin 2x/2)] + (cos 6 x/6) + C

Problem 2 :

1/(1+sin x)

Solution :

Multiplying both numerator and denominator by the conjugate of denominator.

 ∫[1/(1+sin x)] ⋅ (1-sin x)/(1-sinx) dx

=  ∫[(1-sin x)/(1+sin x)(1-sin x)] dx

=  ∫[(1-sin x)/(12-sin2x)] dx

=  ∫[(1-sin x)/cos²x] dx

=  ∫ [(1/cos2x) - (sin x/cos2x)] dx

=  ∫[sec2x - (sin x/cosx) (1/cos x)] dx

=  ∫[sec2x - tan x sec x] dx

=  ∫sec2x dx - ∫ tan x sec x dx

=  tan x - sec x + C

Problem 3 :

 1/(1-cos x)

Solution :

=  ∫[1/(1-cos x)]  (1+cos x)/(1+cos x) dx

=  ∫[(1+ cos x)/(1+cos x)(1-cos x)] dx

=  ∫[(1+cos x)/(12-cos2x)] dx

=  ∫[(1+cos x)/sin2x] dx

=  ∫[(1/sin2x) + (cos x/sin2x)] dx

=  ∫[cosec2x + (cos x/sin x) (1/sin x)] dx

=  ∫[cosec2x + cot x cosec x] dx

=  ∫cosec2x dx + ∫ cot x cosec x dx

=  -cot x -cosec x + C

Problem 4 :

√(1 - sin2x)

Solution :

sin 2x  =  2 sin x cos x

=  ∫√(1 - sin2x) dx

=  ∫√(cos2x + sin2x - 2sin x cos x) dx

=  ∫√[(cos x - sin x)2] dx

=  ∫ (cos x - sin x) dx

=  ∫cos x dx - ∫ sin x dx

=  sin x - (-cos x) + C

=  sin x + cos x + C

Problem 5 :

cos x/cos (x - a)

Solution :

=  ∫cos x/cos (x - a) dx

=  ∫cos (x+a-a)/cos (x-a) dx

By comparing the numerator with the formula

cos (A- B) = cos A cos B - sin A sin B

=  ∫[cos (x+a) cos a - sin (x+a) sin a]/cos (x+a) dx

=  ∫[cos (x+a) cos a]/cos (x+a) dx - ∫[sin (x+a) sin a]/cos (x+a) dx

=  ∫cos a dx - ∫tan (x + a) sin a dx

=  x cos a - sin a log cos (x-a) + C

Problem 6 :

√tan x/sin x cos x

Solution:

=  ∫√tan x/sin x cos x dx

=  ∫[√tan x/sin x cos x] [√tan x/√tan x] dx

=  ∫[tan x/√tan x sin x cos x] dx

=  ∫[(sin x/cos x)/√tan x sin x cos x] dx

=  ∫[(sec²x)/√tan x]  dx

let t  =  tan x

differentiating with respect to x.

dt  =  sec2x dx

=  ∫[(sec2 x)/√tan x]  dx

=  ∫[1/√t]  dt

=  ∫ t(-1/2)  dt

=  2 √t + C

=  2√tan x + C

Problem 7 :

sin √x/√x

Solution :

=  ∫sin√x/√x dx

let t  =  √x

differentiating with respect to x

dt  =  (1/2√x) dx

2 dt  =  (1/√x) dx

=  ∫sin√x/√x dx

=  ∫sin t (2 dt)

=  2∫sin t dt

=  2 (-cos t) + C

=  -2cos t + C

now we are going to apply the value of t

=  -2cos √x + C

Problem 8 :

sin 2x/(a cos2x + b sin2x)

Solution :

sin 2x/(a cos2x + b sin2x) dx

t  =  (a cos2x + b sin2x)

dt  =  2 a cos x (-sin x) + 2 b sin x cos x

dt  =  -2 a sin x cos x + 2 b sin x cos x

dt  =  - a sin 2x + b sin 2x

dt  =  sin 2x(b - a) dx

dt/(b-a)  =  sin 2x dx

∫sin 2x/(a cos2x + b sin2x) dx  =  1/(b-a) ∫1/t dt

=  1/(b-a) ln t + C

=  1/(b-a) ln (a cos2x + b sin2x) + C

Problem 9 :

sin23 x + 4 cos 4 x

Solution :

∫ (sin23 x + 4 cos 4x) dx

sin2x  =  (1-cos 2x)/2

sin2 3x  =  [1 - cos 2(3x)]/2

=  (1 - cos 6x)/2

=  ∫[sin23x + 4 cos 4x] dx

=  ∫[(1- cos 6x)/2 + 4 cos 4 x] dx

=  ∫[(1- cos 6x)/2] dx + ∫ 4 cos 4 x dx

=  (1/2)∫[(1- cos 6x)] dx + 4 ∫ cos 4 x dx

=  (1/2)[x - (sin 6x/6)] + 4 (sin 4 x/4) + C

=  (1/2)[x - (sin 6x/6)] + sin 4 x + C

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here. 

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Converting Between Polar and Rectangular Coordinates

    Apr 22, 24 01:36 PM

    Converting Between Polar and Rectangular Coordinates

    Read More

  2. Converting Between Polar and Rectangular Equations Homework

    Apr 21, 24 08:29 PM

    Converting Between Polar and Rectangular Equations Homework

    Read More

  3. Converting Between Polar and Rectangular Equations Worksheet

    Apr 21, 24 01:23 AM

    tutoring.png
    Converting Between Polar and Rectangular Equations Worksheet

    Read More