# INTEGRATION OF TRIGONOMETRIC FUNCTIONS EXAMPLES

Example 1 :

Integrate the following functions with respect to x :

sin2x / (1 + cos x)

Solution :

∫[sin2x / (1 + cos x)] dx

=  ∫[(1 - cos2x) / (1 + cos x)] dx

=  ∫[(1 + cos x)(1 - cosx) / (1 + cos x)] dx

=  ∫(1 - cos x) dx

=  x - sin x + c

Example 2 :

Integrate the following functions with respect to x :

sin 4x/sin x

Solution :

∫[sin 4x/sin x] dx

sin 4x/sin x  =  sin 2 (2x) / sin x

=  2 sin 2x cos 2x / sin x

=  2 (2 sinx cos x) cos 2x / sin x

=  4 cos x cos 2x

=  2 (2 cos x cos 2x)

=  2 [cos (x + 2x) + cos (-x)]

sin 4x/sin x  =  2 [cos 3x + cos x]

=  2  [cos 3x + cos x] dx

=  2 [(sin 3x)/3 + (sin x)] + c

Example 3 :

Integrate the following functions with respect to x :

cos 3x cos 2x

Solution :

∫[cos 3x cos 2x] dx

=  ∫(2/2) [cos 3x cos 2x] dx

=  (1/2) ∫(2cos 3x cos 2x) dx

=  (1/2) ∫[(cos (3x + 2x) + cos (3x - 2x)] dx

=  (1/2) ∫[cos 5x + cos x] dx

=  (1/2) [(sin 5x)/5 + sin x] + c

Example 4 :

Integrate the following functions with respect to x :

sin2 5x

Solution :

∫[sin2 5x] dx

=  ∫[1 - cos 2(5x)] dx

=  ∫[1 - cos 10x] dx

=  x - sin 10x /10 + c

=  x - (1/10) sin 10x + c

Eample 5 :

Integrate the following functions with respect to x :

(1 + cos 4x) / (cot x - tan x)

Solution :

∫[(1 + cos 4x) / (cot x - tan x)] dx

cos 2x  =  2cos2x - 1

2cos2x  =  1 + cos 2x

2cos22x  =  1 + cos 4x

=  (2cos22x) / ((cos x/sin x) - (sin x/cos x))

=  (2cos22x) / ((cos2x - sin2x)/(sin x cos x))

=  (2cos22x)  ((sin x cos x) / cos 2x)

=  2 cos 2x sin x cos x

=   cos 2x (2 sin x cos x)

=   cos 2x sin 2x

=  ∫(2/2) (cos 2x sin 2x) dx

=  (1/2) ∫ sin 2(2x) dx

=  (1/2) sin 4x dx

=  -(1/2) (cos 4x)/4 + c

=  -(1/8) (cos 4x) + c

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

## Recent Articles

1. ### Finding the Slope of a Tangent Line Using Derivative

Mar 01, 24 10:45 PM

Finding the Slope of a Tangent Line Using Derivative

2. ### Implicit Differentiation

Mar 01, 24 08:48 PM

Implicit Differentiation - Concept - Examples