INTEGRATION OF LINEAR IN NUMERATOR AND QUADRATIC IN THE DENOMINATOR

About "Integration of Linear in Numerator and Quadratic in the Denominator"

Integration of Linear in Numerator and Quadratic in the Denominator :

Here we are going to see some example problems to understand evaluating integration of linear in the numerator and quadratic in the denominator.

To know the formulas used in integration, please visit the page "Integration Formulas for Class 12".

Integrating Rational Functions Linear in the Numerator and Quadratic in the Denominator - Examples

Question 1 :

Evaluate the following with respect to "x".

(2x - 3) / (x2 + 4x - 12)

Solution :

 ∫(2x - 3) / (x2 + 4x - 12) dx

(2x - 3)   =   A(d/dx) (x2 + 4x - 12) + B

2x - 3  =  A (2x + 4) + B  ----(1)

Equating the coefficients of x.

2  =  2A

A  =  1

Equating constant terms

-3  =  4A + B

-3  =  4(1) + B

-3  =  4 + B

B  =  -3 - 4  ===>  B  =  -7

Applying the values of A and B in (1)

2x - 3  =  1 (2x + 4) - 7

By dividing each term by , we get

(2x-3)/(x2+4x-12) dx 

  = (2x-4)/(x2+4x-12) dx - 7 1/(x2+4x-12) dx

  =  log (x2+4x-12) - 71/(x2+4x-12) dx

x2+4x-12  =  x+ 2x(2) + 22 - 22 -12

 =  (x + 2)2 + 4 - 12

 =  (x + 2)2 - 8

 =  (x + 2)2 - 42

  =  log (x2+4x-12) - 71/[(x + 2)2 - 42] dx

  =  log (x2+4x-12) - 7 [1/2(4) log(x + 2 - 4) / (x + 2 + 4)]

  =  log (x2+4x-12) - (7/8) [log(x-2) / (x + 6)] + c

Question 2 :

Evaluate the following with respect to "x".

(5x - 2) / (2 + 2x + x2)

Solution :

 ∫(5x - 2) / (2 + 2x + x2) dx

(5x - 2)   =   A(d/dx) (2 + 2x + x2) + B

5x - 2  =  A (2 + 2x) + B  ----(1)

Equating the coefficients of x.

5  =  2A

A  =  5/2

Equating constant terms

-2  =  2A + B

-2  =  2(5/2) + B

-2  =  5 + B

B  =  -2 - 5  ===>  B  =  -7

Applying the values of A and B in (1)

5x - 2  =  (5/2) (2 + 2x) - 7

By dividing each term by , we get

(5x - 2) / (2 + 2x + x2dx 

  =  (5/2) (2x + 2) / (2 + 2x + x2) - 7 1/(2 + 2x + x2) dx

  =  log (2 + 2x + x2) - 71/(2 + 2x + x2) dx

2 + 2x + x2  =  x+ 2x(1) + 12 - 12 + 2

 =  (x + 1)2 - 1 + 2

 =  (x + 1)2 + 1

  =  (5/2)log (2 + 2x + x2) - 71/[(x + 1)2 + 1] dx

  =  (5/2) log (2 + 2x + x2) - 7 tan-1 (x + 1) + c

  =  (5/2) log (2 + 2x + x2)  - 7 tan-1 (x + 1) + c

After having gone through the stuff given above, we hope that the students would have understood, "Integration of Linear in Numerator and Quadratic in the Denominator"

Apart from the stuff given in "Integration of Linear in Numerator and Quadratic in the Denominator", if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Equation of Tangent Line to Inverse Function

    May 30, 23 11:19 AM

    derivativeofinversefunction2
    Equation of Tangent Line to Inverse Function

    Read More

  2. Derivative of Inverse Functions

    May 30, 23 10:38 AM

    derivativeofinversefunction1
    Derivative of Inverse Functions

    Read More

  3. Adaptive Learning Platforms

    May 26, 23 12:27 PM

    adaptivelearning1
    Adaptive Learning Platforms: Personalized Mathematics Instruction with Technology

    Read More