INTEGRATION FORMULAS FOR CLASS 12

About "Integration Formulas for Class 12"

Integration Formulas for Class 12 :

Here we are going to see list of formulas in integration.

Basic formulas in integration

∫ xⁿ dx = x⁽ⁿ ⁺ ¹⁾/(n + 1) + c

∫ (1/xⁿ) dx = -1/(n - 1) x⁽ⁿ⁻¹⁾  + c

∫ (1/x) dx = log x  + c

∫ e^(x) dx = e^x  + c

∫ a^(x) dx = a^x/(log a)  + c

∫ sin x dx = - Cos x + c

∫ cos x dx = Sin x + c 

∫ cosec ² x dx = - Cot x  + c

∫ sec² x dx = tan x  + c

∫ sec x tan x dx = sec x  + c

∫ cosec x cot x dx = - cosec x  + c

∫ 1/(1 + x²) dx =  tan ⁻ ¹x  + c

∫ 1/ √(1 - x²) dx = sin ⁻ ¹x  + c

∫ tan x dx = log |sec x| + c

∫cot x dx = log |sin x| + c

∫cosec x dx = log |cosec x - cot x| + c

∫sec x dx = log |sec x + tan x| + c

∫u dv = uv - ∫vdu

Bernoulli formula :

∫u dv = uv - u'v1 + u''v2 - ............ 

∫f'(x)/f(x)  dx  =  log |x| + c

∫ f'(x) [f(x)]n dx  =  [f(x)]n + 1/(n + 1)


Integration Formula When x is in the Form ax + b

∫  e^(a x + b) =  (1/a) e^ (a x + b) + c

∫ (ax + b)ⁿ dx = (1/a) (ax + b)⁽ⁿ ⁺ ¹⁾/(n + 1)   + c

∫ 1/(ax + b) dx = (1/a) log (ax + b) + c

∫ e^(ax + b) dx = (1/a) e^ (ax + b) + c

∫ sin (ax + b) dx = -(1/a) cos (ax + b) + c

∫ cos (ax + b) dx = (1/a) sin (ax + b) + c

∫ sec² (ax + b) dx = (1/a) tan (ax + b) + c

∫ cosec ² (ax + b) dx = -(1/a) cot (ax + b) + c

∫ cosec (ax+b)cot (ax+b)dx=-(1/a)Cosec (ax+b) + c

∫ sec (ax + b) tan (ax + b) dx = sec (ax + b) + c

∫ 1/[1+ (ax)²] dx = (1/a) tan ⁻ ¹ (ax) + c

∫ 1/ √[1 - (ax ²)] dx = (1/a) sin ⁻ ¹(ax)   + c

Integration Formula in the form e^ax sin bx or e^ax cos bx

∫ eax sin bx dx  =  eax/(a2 + b2) (a sin bx - b cos bx) + c

∫ eax cos bx dx =  eax/(a2 + b2) (a cos bx + b sin bx) + c

Standard Integration Formulas

∫ dx/(a2-x2)  =  (1/2a) log [(a + x)/(a - x)] + c

∫ dx/(x2-a2)  =  (1/2a) log [(x - a)/(x + a)] + c

∫ dx/(a2+ x2)  =  (1/a) tan-1 (x/a) + c

∫ dx/(a2- x2)  =  sin-1 (x/a) + c

∫ dx/(√x2- a2)  =  log (x + (√x2- a2)) + c

∫ dx/(√x2+ a2)  =  log (x + (√x2+ a2)) + c

√(a2- x2)  =  (x/2) √(a2- x2) + (a2/2) sin-1(x/a) + c

∫ √(x2- a2)  =  (x/2) √(x2- a2) - (a2/2) log(x+√(x2- a2))+c

∫ √(x2+a2)  =  (x/2) √(x2+ a2) + (a2/2) log(x+√(x2+ a2))+c

After having gone through the stuff given above, we hope that the students would have understood, "Integration Formulas for Class 12"

Apart from the stuff given in "Integration Formulas for Class 12", if you need any other stuff in math, please use our google custom search here.

HTML Comment Box is loading comments...